BROYCE BROYCE BROYCE BROYCE BROYCE CONTROL CONTROL CONTROL CONTROL

- Overcurrent and Earth Fault with Voltage Monitoring
- Overcurrent and Earth Fault
- Overcurrent Only
- Earth Fault Only

Click above and view....!

• speed control relays • temperature control relays • protection devices • generator protection • hours run meter • modular enclosures • special products •

Click here for Main Page

Combined Overcurrent / Earth Fault Relay and Voltage Monitoring

- True R.M.S. measurements
- Low Set and High Set tripping thresholds for both Overcurrent and Earth Fault detection
- 6 selectable IDMT (Inverse Definite Minimum Time) characteristic curves or adjustable DT (Definitive Time)
 - Three phase over current and Earth fault detection
- Measurement and live display of individual phase and earth fault currents
- Pre-defined selectable CT ratio's (5:5....5000:5)
- Display of measured phase to neutral or phase to phase voltages
- Display of measured frequency, power, power factor and hours run
- Microprocessor based (self checking) with non-volatile memory
- "Ecosmart" Energy efficient power supply design
 - Rear mounted pluggable connectors for supply, relay contacts and current inputs

Dims W x H. 96 x 96mm (front) W x H. 89.5 x 89.5mm (main body)

PRESENTATION 0.00_{A} I_{LL} I_{L2} 0.00_{A} I_{L3} 0.00_{A} 0.00_{A} I. LCD (Liquid Crystal Display) for user information "MODE" button*

- 2. "RESET" button
- 3. "TEST" button
- 4. "Power supply" green LED indication
- 6. Parameter increment button*
- 7. Parameter decrement button*
- 8. "Trip status" red LED indication
- * accessible only when the front cover is open

OPERATION & OVERVIEW

The P9690 (from the P9600 series family of IDMT/DT relays) is a microprocessor based relay designed to monitor and detect Overcurrent on individual phases and non-directional Earth faults (by measurement of the neutral current) in 3-phase applications. Typically the P9690 is wired in conjunction with external current transformers of the feeder to be protected.

In addition, the P9690 is also able to measure and display, phase to neutral or phase to phase voltages along with the system frequency. It can also calculate the power factor and power for each phase. Finally, it will indicate total hours for as long as it remains powered. Note that tripping of this product only occurs on Overcurrent or Earth faults. It will not trip due to

A clear backlit LCD provides all the key information that the user requires for both operation and the setting up. Setting is achieved in a few simple steps and requires no previous knowledge of product operation.

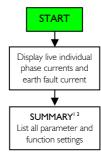
Normal operation provides the user with actual live individual phase currents and earth fault current all on one screen. The actual phase current represents that of the current passing through the primary side of the externally connected CT's. This is achieved by the setting of the ratio for the CT.

Programming mode allows the user to assign the operation mode for both internal relays. They can be individually assigned to Overcurrent, Earth fault or a combination of both. They can also be configured for Auto or Manual resetting. Relay 2 has the added option of being allowed to energise at the start or end of a time out period. If assigned to energise at the start, the Relay can be used to operate a buzzer or lamp giving early warning before a system

Low-set and High-set thresholds can be programmed for both Overcurrent and Earth fault detection. The time current characteristic of the low-set units are selectable between Normal Inverse curve 3/10, Normal Inverse curve 1.3/10, Long Time Inverse curve, Very Inverse curve, Extremely Inverse curve, Extremely Inverse 0.65 curve and Definite Time. High-set units are the Definitive Time type. Instantaneous tripping is possible by setting the time to minimum.

Two simple Summary screens are displayed once the programming is complete. The same screens can also be displayed by presses of the "RESET" button. This allows the user to access key information with the tamperproof transparent cover closed and sealed.

A Test mode is provided (accessible with the tamperproof cover closed) to confirm the correct operation of the internal relays. The relays will energise when the "TEST" button is pressed and de-energise when the button is released (AUTO Reset) or when the "RESET" button is pressed (MAN Reset).


FUNCTION OVERVIEW

Programming mode.

User settings summary mode

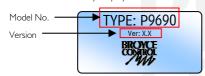
Programmable parameters

Summary screens are split into two with one screen showing Overcurrent settings and the other showing Earth fault settings.

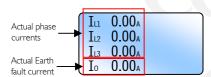
 $^{^{\}rm 2}$ Displaying of the Summary screens during normal operation is achieved via subsequent presses of the "RESET" button. See Section 8. QUICK VIEW OF USER SETTINGS for further information.

INSTALLATION

Installation work must be carried out by qualified personnel.


- BEFORE INSTALLATION, ISOLATE THE SUPPLY. THIS PRODUCT IS DESIGNED TO CONNECT TO SEVERAL TYPES OF CIRCUITS. ENSURE ALL ARE ISOLATED ^
- Remove the P9690 from the packaging.
- Lift the raised part of the side clip in order to withdraw from the housing. Carry this out on each side.
- Insert the P9690 into the panel cut-out and fit the side clips back on to the housing.
- Slide the clips towards the front of the unit until they come in to contact with the reverse of the panel. The unit is now secured in place.
- Wire the supplied female pluggable connectors as required.
- Plug the connectors into the relevant sockets on the rear of the unit.
- The P9690 is now ready for powering and programming.

The front window of the P9690 is supplied with a clear protective film which can be removed as and when necessary.


^ When carrying out future maintenance on the product or application and it becomes necessary to disconnect the connectors from the product, ensure for the Current Transformer connector, they do not remain open circuit. This can lead to high voltages being present on this connector.

NORMAL OPERATION

- Apply power to the unit and the green "Power supply" LED will illuminate.
- The LCD will momentarily display a welcome screen as shown...

....then after a short delay reverts to indicating the following information:

TEST MODE

Press and hold the button and both relays will energise. The LCD will display the characters "TEST" and the product part number (as below). The LCD backlight and red "Trip" LED will flash.

- button and the relay(s) will remain energised if set to Manual reset or de-energise if set to Auto reset.
- to de-energise relay(s) which are set to Manual reset. The LCD will revert back to Normal operation. The LCD backlight and red "Trip" LED will stop flashing.

Testing should be carried out on a regular basis to check the integrity of the P9690.

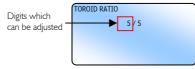
DO NOT use this product to provide a means of isolating circuits in order to work on when placed in the "TEST" mode. This should only be done by means of operating isolators, circuit breakers or other methods of removing power in this application.

PROGRAMMING

Programming/setting of the P9690 is carried out using the 3 buttons located behind the transparent cover.

button selects the required parameter to be changed. The buttons either increment or decrement a value accordingly.

Any adjustments made are stored by the pressing and holding of the until the LCD shows the word "Saved!" See Section 7. SAVING OF SETTINGS.


Thease read the "Notes during programming" before commencing with the following.

IA. TOROID RATIO

Setting the Toroid Ratio will allow the "actual" Phase currents (IL I, IL2, IL3) and Neutral current (Io) displayed on the LCD to represent that of the currents flowing through the external CT's. If no CT's are used, the parameter should be set to 5/5 (i.e. 1:1). The setting applies to all CT's.

Default setting is "5/5"

Press and hold the $\stackrel{ ext{MODE}}{=}$ button. The LCD displays a screen showing the characters "User Settings" then the following screen appears...

- to set the primary value of the external CT's. Press either
 - The digit after the forward slash "/" cannot be changed.

IB. NETWORK FREQUENCY

Default setting is "50Hz"

Whilst in the same screen as that for the Toroid Ratio (see IA.), press

- to select between 50Hz or 60Hz. This should be set to suit the frequency of the network being monitored.
- button to set the options for "Relay I" as described in Press and hold the the next section

2. RELAY I SETTING

Default setting for Relay 1 is linked to "O/C & E/F". Resetting mode is Manual.

The LCD displays the following screen. The options under "I:" are displayed and the default setting highlighted.

- to select how Relay 1 is assigned to tripping.
- Press the button and the options under "2:" for resetting are displayed and the default setting highlighted.

Actual LCD presentation when adjustable parameters are displayed.

or to select between **AUTO** resetting or **MAN**UAL resetting (after a fault has occurred).

continued on next page...

• PROGRAMMING (continued)

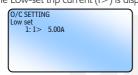
 Press and hold the button to set the options for "Relay 2" as described in the next section.

3. RELAY 2 SETTING

The Default setting for Relay 2 is linked to "O/C & E/F" and energising at the end of the time out period. Resetting mode is Auto.

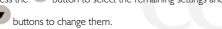
Setting of "Relay 2" is carried out in a similar manner as "Relay I", however it
is necessary to assign the relay to either energise at the start (S) or end (E) of
the time out period.

Actual LCD presentation when adjustable parameters are displayed.


 Press and hold the button to set the options for "OVERCURRENT" as described in the next section.

4. OVERCURRENT SETTING

The description for the Curves is abbreviated when displayed on the screen. Refer to "IDMT Characteristic Curves" for further explanation.


Default settings for Overcurrent are shown in the last LCD screen example in this section.

 Settings for Overcurrent are displayed in turn following subsequent presses of the house button. The Low-set trip current (I>) is displayed first.

• Press either or to change the current.

Press the button to select the remaining settings and use the

O/C SETTING Low Set: 1: |> 5.00A 2: Curve Nil 3 10 3: |< 0.1 High Set: 4: |> 50.00A 5: t>> 0.05s

Actual LCD presentation when adjustable parameters are displayed. Screen example above also shows the default settings for OVERCURRENT.

Press and hold the button to set the options for "EARTH FAULT" as
described in the next section.

 \mathcal{T} If the Curve in selection "2:" is set to Definite Time, then selection "3:" will display "3: t >" and the required delay can then be set.

The High-set is set to Disable in selection "4:", then I >> or t >> cannot be adjusted.

5. EARTH FAULT SETTING

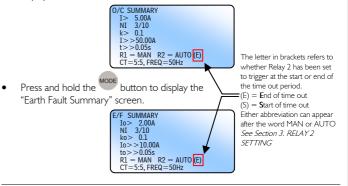
The Default settings for Earth Fault are shown in the LCD screen example in this section.

 Settings for Earth Fault are carried out in the same manner as described for Overcurrent.

> E/F SETTING Low Set: 1: io > 2.00A 2: Curve NI 3/10 3: k > 0.1 High Set: 4: io > > 10.00A 5: to > > 0.05s

Screen example showing the default settings for EARTH FAULT.

 Press and hold the button to see a summary of the "OVERCURRENT" then "EARTH FAULT" settings as described in the next section.


If the Curve in selection "2:" is set to Definite Time, then selection "3:" will display "3: to>" and the required delay can then be set.

The High-set is set to Disable in selection "4:", then lo >> or to >> cannot be adjusted.

6. OVERCURRENT & EARTH FAULT SUMMARY

The is not possible to edit settings when these screens are displayed.

 Following the setting of "Earth Fault", the LCD displays the "Overcurrent Summary" screen showing a summary of the settings made during programming. All settings are displayed. The selected CT ratio, Network Frequency and Relay operation (following a Reset) information is also displayed.

7. SAVING OF SETTINGS

If after viewing the Summary screens the settings are correct, press and hold
the button until the word "Saved." appears. Any new settings are now
stored.

The screen will revert back to Normal operation.

8. QUICK VIEW OF USER SETTINGS

This not possible to edit settings when these screens are displayed.

This feature can also be activated with the front window closed!

- Press and hold the button to display the initial power up screen.
- Press the same button again to display the "Last Tripped Information" screen (refer to the next section for further information on this feature).
- Press again to display the "Overcurrent Summary" screen.
- Press again to display the "Earth Fault Summary" screen.
- Press again to display the contact details for Broyce Control.
- Press again to revert back to Normal operation.

9. LAST TRIPPED INFORMATION

This information is held in memory even if power is removed. If a new trip event occurs, this information will be overwritten.

This feature allows the user to view the key information relating to the last trip condition. It is accessed as described in Section 8 above.

It highlights the cause of the trip (i.e. which phase for example), the level of current at the trine the trip occurred; the triggering method (Low-set or High-set) and which relays were activated. An example is shown below.

Notes during programming

TIf during programming it is necessary to abort, press the button brief

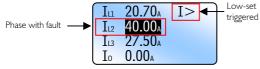
Pressing and holding either or for > I sec. will increment or decrement the new value at a quicker rate.

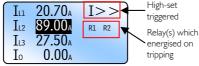
Stepping through each User Setting screen is performed by pressing and

holding the button until the desired screen is displayed.

Short presses of the button will allow further editable settings to be changed within a specific screen.

If the user remains in a setting or summary screen where no adjustments or button presses are made within a certain period, the screen will revert back to Normal operation. Additionally, any settings that have been made but not stored will not be saved.

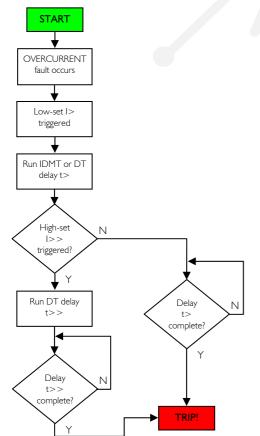

"O/C" refers to Overcurrent and "E/F" refers to Earth fault.


TRIPPING MODES

I. OVERCURRENT

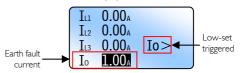
- A fault which develops on a phase will be indicated by an increase in current reading on the LCD. When the level of current exceeds the Low-set setting, the phase at fault will be highlighted by the digits flashing.
- The LCD backlight will flash.
- Relay 2 will energise if assigned to Overcurrent and set to energise at the start
 of the time out period (See Section 3. RELAY 2 SETTING).
- The characters "I>" will display to indicate the Low-set has been triggered.

If the current continues to increase above the High-set setting, the characters
"I>" will change and display "I>>" to indicate the High-set has been
triggered.

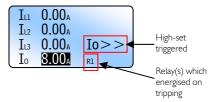


- When the unit finally trips, the digits of the phase at fault will stop flashing and remain highlighted. This allows the user to see which phase was at fault and caused the unit to trip.
- The red "Tripped" LED will also flash.
- The relays which energised are also displayed on the screen after tripping.
- Press to reset and return the unit back to normal operation (assuming the fault has been cleared). The LCD reverts back to displaying the normal system currents and the red "Tripped" LED stops flashing.

"If either relay is set for Auto resetting, then they would have de-energised after the fault had cleared. The corresponding relay ident (i.e. R I and/or R2) on the display would also disappear. Pressing the "RESET" button will only clear the LCD. If either relay is set for Manual resetting, then pressing the "RESET" button will deenergise the relay(s) and clear the LCD.


In the event of an Overcurrent condition, the basic sequence of events is shown below.

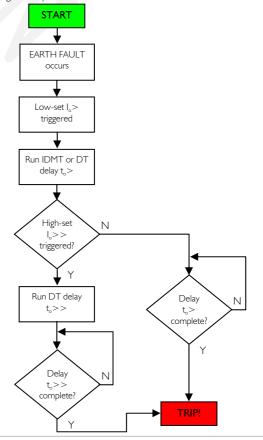
Assuming High-set trip is enabled.



2. EARTH FAULT

- When an Earth fault occurs causing a flow in current through the Neutral, an
 increase in current reading on the LCD will occur. When the level of current
 exceeds the Low-set setting, the reading will be highlighted by the digits
 flashing.
- The LCD backlight will flash.
- Relay 2 will energise if assigned to Earth fault and set to energise at the start of the time out period (See Section 3. RELAY 2 SETTING).
- The characters "lo>" will display to indicate the Low-set has been triggered.

 If the current continues to increase above the High-set setting, the characters "lo>" will change and display "lo>>" to indicate the High-set has been triggered.



- When the unit finally trips, the digits will stop flashing and remain highlighted.
 This allows the user to see what caused the unit to trip.
- The red "Tripped" LED will also flash.
- The relays which energised are also displayed on the screen after tripping.
- Press to reset and return the unit back to normal operation (assuming the fault has been cleared). The LCD reverts back to displaying the normal system currents and the red "Tripped" LED stops flashing.

The faither relay is set for Auto resetting, then they would have de-energised after the fault had cleared. The corresponding relay ident (i.e. RI and/or R2) on the display would also disappear. Pressing the "RESET" button will only clear the LCD. If either relay is set for Manual resetting, then pressing the "RESET" button will de-energise the relay(s) and clear the LCD.

In the event of an Earth fault condition, the basic sequence of events is shown below.

Assuming High-set trip is enabled.

ADDITONAL MEASUREMENTS

With the 4-way connector wired and plugged in to the rear of the P9690, voltage and current present, it will be possible to measure and display the following information.

I. VOLTAGE MEASUREMENTS PHASE TO NEUTRAL OR PHASE TO PHASE

The frequency measurement "f" is derived from L1 and will therefore only appear on the LCD if L1 is present and the voltage is >12V phase to neutral.

Quickly press the button and the following will appear on the LCD
which provides the phase to neutral measurements of the phases connected.
The system measured frequency is also displayed.

Screen example showing the phase to neutral voltages and frequency

• Press the same button again to display the measured phase to phase voltages.

Vu	400.0 _V	
V ₁₂	400.0 _V	
VI3	400.0 _v	
f L	50.00 _{Hz}	
()	JU.UUHz	

Screen example showing the phase to phase voltages and frequency

2. POWER

The actual power displayed will also be dependant on the selected Toroid ratio's. See examples on the right.

 After viewing the phase to phase voltages, pressing the same button again displays the calculated power for each phase.

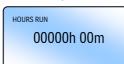
P _{L1/N} P _{L2/N} P _{L3/N}	0.0 _w 0.0 _w 0.0 _w	

3. POWER FACTOR

♥ By default, the displayed Power Factor will be 1.00.

 After viewing the calculated power, pressing the same button again displays the calculated power factor for each phase.

pf _{L1/N} 1.00 pf _{L2/N} 1.00 pf _{L3/N} 1.00


4. HOURS RUN

This will run for as long as power is applied to the relay.

The displayed time cannot be reset.

The displayed time will be retained in memory during removal of power to the relay.

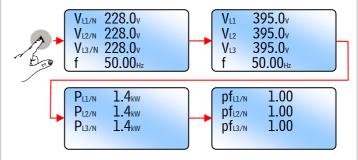
 After viewing the calculated power, pressing the same button again displays the calculated power factor for each phase.

 Pressing the same button again will revert back to display the measured phase currents.

Notes

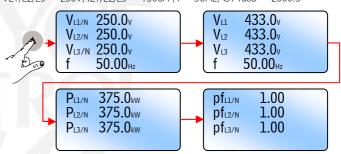
If alterations to the User Settings are required whilst in one of the above screens, it will be necessary to exit first by pressing the briefly.

5. FAULT CONDITION

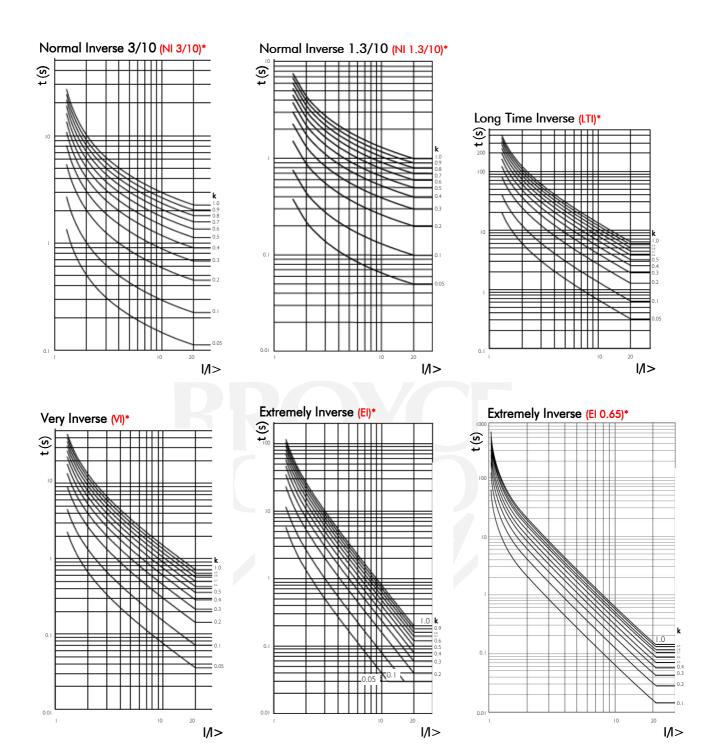

- If any of the examples shown on the left appear on the LCD, it will be exited automatically should a fault occur which initiates an Overcurrent or Earth fault time out.
- The LCD will then revert to displaying which phase is at fault or whether the fault exists on the neutral. See "Tripping Modes" on the previous page.

6. EXAMPLES

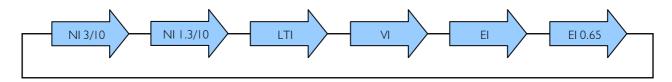
The following examples show the expected measured information based on the voltage and currents present at the inputs. Trip settings are not taken in to account in the examples.


Example. I

VL1/L2/L3 = 228V, IL1/L2/L3 = 6.35A, f = 50Hz, CT ratio = 5:5


Example. 2

VL1/L2/L3 = 250V, $IL1/L2/L3 = 1500A^{1}$, f = 50Hz, CT ratio = 2000:5


Current on the primary side of the externally connected 2000A CT's

IDMT CHARACTERISTIC CURVES

^{*} Abbreviations used in the LCD screen for the selected IDMT characteristic curve.

The sequence of curves that are presented to the user when programming is shown below

TECHNICAL SPECIFICATION

Supply voltage Un (1, 2): 85 – 265VAC/85 - 370VDC

18 - 57VAC/18 - 75VDC

(Voltage range should be specified at time of ordering) 50/60Hz (AC Supplies) Rated frequency: Isolation: Over voltage cat. III

Rated impulse

withstand voltage: 4kV (1.2 / 50µS) IEC 60664

Power consumption: 3W max.

3-Phase voltage input

(L1, L2, L3, N): 3-Phase, 3 or 4-wire

50/60Hz Rated frequency:

Measured voltage range: 12 – 400V phase to neutral

Rated impulse

withstand voltage: $4kV (1.2 / 50\mu S) IEC 60664$

Rated current input In: 5A (directly connected) 50/60Hz Rated frequency:

Burden: < 0.4VA @ In 4 x In (continuous) Overload

External CT's (9.....16):

Class P recommended. (with 5A secondary)

Maximum CT primary

current rating: 5000A

Overcurrent settings:

Low-set trip (I>): 0.50 - 10.00A(10 - 200%)

Low-set time multiplier (k>): 0.05 - 1.00

0.05 - 100sLow-set definite time (t>):

High-set trip (I>>): 0.5 - 100A (10 - 2000%) or disable

High-set definite time (t>>): 0.05 - 2.5s

Earth fault settings:

0.10 - 5.00A(2 - 100%)Low-set trip (I_o>):

Low-set time multiplier ($k_0 >$): 0.05 - 1.00

0.05 - 100sLow-set definite time (t $_{\circ}>$):

0.10 - 50.00A (2 – 1000%) or disable High-set trip $(I_0 >>)$:

High-set definite time ($t_o >>$): 0.05 - 2.5s

Pick up value: +2% of trip setting

Accuracy:

Protection thresholds: ± 5%

Time delay (DT): ±5% (with a minimum of 50mS)

 \pm 5% (with a minimum of 50mS and I > 1.2 x Time delay (IDMT):

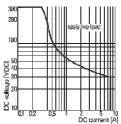
set-trip)

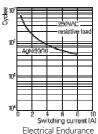
Actual phase current: ± 1% of rated current In Actual Earth fault current: ± 1% of rated current In Voltage: 0.5% (>100V AC) Power: 2% of full scale (-90° to +90°)

Power factor: 2% (0.5 < pf < 1)Frequency ± 0.2Hz (45 to 65Hz)

Display update time: < I sec. (All measurements) ± 0.5% @ constant conditions Repeat accuracy:

 $-10 \text{ to } +60^{\circ}\text{C}$ Ambient temperature: Relative humidity: +95%


(RLI - 3, 4, 5): I x SPDT relay (RL2 - 6, 7, 8): I x SPDT relay ACI 250V 8A (2000VA) Output rating:


ACI5 250V 5A (1250VA) DCI 25V 8A (200W)

Flectrical life: ≥ 150,000 ops at rated load Dielectric voltage: 2kV AC (rms) IEC 60947-1

Rated impulse

withstand voltage 4kV (1.2 / 50µS) IEC 60664

Housing: Flame retardant Lexan

Protection: IP55 / IP20 (rear)

Max. DC Load Breaking Capacity

≈ 640g Weight:

Panel mounting. Cut-out = $91 \times 91 \text{mm} (\pm 0.5 \text{mm})$ Mounting:

Max. panel thickness:

 $\ensuremath{\mathsf{UL}} 94\ensuremath{\,\mathsf{V}} \text{-} 0$ rated pluggable and re-wireable female Terminal type:

connectors comprising: 2-way (Power supply 1, 2) 6-way (Relay contacts 3....8)

8-way (Phase current and neutral inputs 9....16)

4-way (3-Phase Voltage Input L1....N) 0.05 - 2.5mm² (30 - 12AWG)

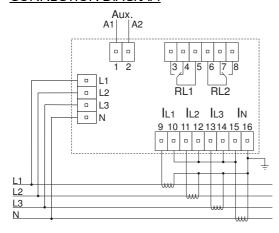
Terminal conductor size: Recommended tightening

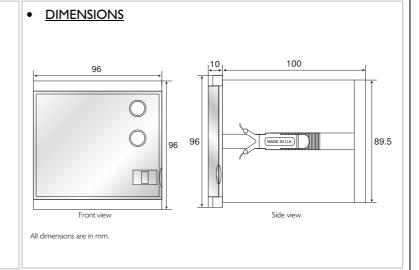
torque: 4.4in lb (0.5Nm) 0.24 - 0.30in (6 - 7.5mm)

Wire stripping length: Conforms to IEC. CE and 🕜 and RoHS Compliant. Approvals:

EMC: Immunity: EN/IEC 61000-6-2 Emissions: EN/IEC 61000-6-4

Generic: IEC 60255-26 (EMC), IEC 255-3, IEC


60255-151


() Bold digits in brackets refer to terminal numbers on the rear of the unit.

Options:

The P9600 range also includes individual Overcurrent or Earth fault relays available with either IDMT or DT characteristics. Please refer to separate data sheets

CONNECTION DIAGRAM

Combined Overcurrent and Earth Fault Relay

- □ True R.M.S. measurements
- ☐ Low Set and High Set tripping thresholds for both Overcurrent and Earth Fault detection
- ☐ 6 selectable IDMT (Inverse Definite Minimum Time) characteristic curves
- ☐ Adjustable DT (Definitive Time)
- ☐ Three phase over current and earth fault detection
- ☐ Measurement and live display of individual phase and earth fault currents
- ☐ Pre-defined selectable CT ratio's (5:5....5000:5)
- ☐ Microprocessor based (self checking) with non-volatile memory
- ☐ "Ecosmart" Energy efficient power supply design
- Rear mounted pluggable connectors for supply, relay contacts and current inputs

Dims: W x H. 96 x 96mm (front) W x H. 89.5 x 89.5mm (main body) L. 100mm

PRESENTATION

Italia 0.00A

It

- 1. LCD (Liquid Crystal Display) for user information
- 2. "RESÈT" button
- "TEST" buttor
- 4. "Power supply" green LED indication
- 5. "MODE" button*
- 6. Parameter increment button*
- 7. Parameter decrement button*
- 8. "Trip status" red LED indication
- * accessible only when the front cover is open

OPERATION & OVERVIEW

The P9680 (from the P9600 series family of IDMT/DT relays) is a microprocessor based relay designed to monitor and detect Overcurrent on individual phases and non-directional Earth faults (by measurement of the neutral current) in 3-phase applications. Typically the P9680 is wired in conjunction with external current transformers of the feeder to be protected.

A clear backlit LCD provides all the key information that the user requires for both operation and the setting up. Setting is achieved in a few simple steps and requires no previous knowledge of product operation.

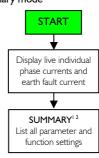
Normal operation provides the user with actual live individual phase currents and earth fault current all on one screen. The actual phase current represents that of the current passing through the primary side of the externally connected CT's. This is achieved by the setting of the ratio for the CT.

Programming mode allows the user to assign the operation mode for both internal relays. They can be individually assigned to Overcurrent, Earth fault or a combination of both. They can also be configured for Auto or Manual resetting. Relay 2 has the added option of being allowed to energise at the start or end of a time out period. If assigned to energise at the start, the Relay can be used to operate a buzzer or lamp giving early warning before a system actually shuts down.


Low-set and High-set thresholds can be programmed for both Overcurrent and Earth fault detection. The time current characteristic of the low-set units are selectable between Normal Inverse curve 3/10, Normal Inverse curve 1.3/10, Long Time Inverse curve, Very Inverse curve, Extremely Inverse curve and Definite Time. High-set units are the Definitive Time type. Instantaneous tripping is possible by setting the time to

Two simple Summary screens are displayed once the programming is complete. The same screens can also be displayed by presses of the "RESET" button. This allows the user to access key information with the tamperproof transparent cover closed and sealed.

A Test mode is provided (also accessible with the tamperproof transparent cover closed) to confirm the correct operation of the internal relays. The relays will energise when the "TEST" button is pressed and de-energise when the button is released (AUTO Reset) or when the "RESET" button is pressed (MAN Reset).


FUNCTION OVERVIEW

Programming mode.

Programmable parameters

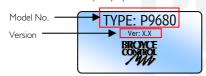
User settings summary mode

 $^{^{\}rm I}$ Summary screens are split into two with one screen showing Overcurrent settings and the other showing Earth fault settings.

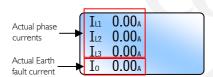
² Displaying of the Summary screens during normal operation is achieved via subsequent presses of the "RESET" button. See Section 8. QUICK VIEW OF USER SETTINGS for further information.

• INSTALLATION

Installation work must be carried out by qualified personnel.


- BEFORE INSTALLATION, ISOLATE THE SUPPLY. THIS PRODUCT IS DESIGNED TO CONNECT TO SEVERAL TYPES OF CIRCUITS. ENSURE ALL ARE ISOLATED ^
- Remove the P9680 from the packaging.
- Lift the raised part of the side clip in order to withdraw from the housing.
 Carry this out on each side.
- Insert the P9680 into the panel cut-out and fit the side clips back on to the housing.
- Slide the clips towards the front of the unit until they come in to contact with the reverse of the panel. The unit is now secured in place.
- Wire the supplied female pluggable connectors as required.
- Plug the connectors into the relevant sockets on the rear of the unit.
- The P9680 is now ready for powering and programming.

The front window of the P9680 is supplied with a clear protective film which can be removed as and when necessary.


^ When carrying out future maintenance on the product or application and it becomes necessary to disconnect the connectors from the product, ensure for the Current Transformer connector, **they do not remain open circuit**. This can lead to high voltages being present on this connector.

NORMAL OPERATION

- Apply power to the unit and the green "Power supply" LED will illuminate.
- The LCD will momentarily display a welcome screen as shown...

....then after a short delay reverts to indicating the following information:

TEST MODE

Press and hold the button and both relays will energise. The LCD will display the characters "TEST" and the product part number (as below). The LCD backlight and red "Trip" LED will flash.

- Release the button and the relay(s) will remain energised if set to Manual reset or de-energise if set to Auto reset.
- Press the to de-energise relay(s) which are set to Manual reset. The LCD will revert back to Normal operation. The LCD backlight and red "Trip" LED will stop flashing.

Testing should be carried out on a regular basis to check the integrity of the P9680.

DO NOT use this product to provide a means of isolating circuits in order to work on when placed in the "TEST" mode. This should only be done by means of operating isolators, circuit breakers or other methods of removing power in this application.

PROGRAMMING

Programming/setting of the P9680 is carried out using the 3 buttons located behind the transparent cover.

The button selects the required parameter to be changed. The buttons either increment or decrement a value accordingly.

Any adjustments made are stored by the pressing and holding of the button until the LCD shows the word "Saved!" See Section 7. SAVING OF SETTINGS.

Please read the "Notes during programming" before commencing with the following.

IA. TOROID RATIO

Setting the Toroid Ratio will allow the "actual" Phase currents (IL 1, IL2, IL3) and Neutral current (Io) displayed on the LCD to represent that of the currents flowing through the external CT's. If no CT's are used, the parameter should be set to 5/5 (i.e. 1:1). The setting applies to all CT's.

Default setting is "5/5"

 Press and hold the button. The LCD displays a screen showing the characters "User Settings" then the following screen appears...

- Press either or to set the primary value of the external CT's.
- The digit after the forward slash "/" cannot be changed.

IB. NETWORK FREQUENCY

Default setting is "50Hz"

Whilst in the same screen as that for the Toroid Ratio (see I.A.), press

- Press either or to select between 50Hz or 60Hz. This should be set to suit the frequency of the network being monitored.
- Press and hold the button to set the options for "Relay I" as described in the next section.

2. RELAY I SETTING

Default setting for Relay 1 is linked to "O/C & E/F". Resetting mode is Manual.

 The LCD displays the following screen. The options under "1:" are displayed and the default setting highlighted.

- Press either or to select how Relay I is assigned to tripping.
- Press the button and the options under "2:" for resetting are displayed and the default setting highlighted.

Actual LCD presentation when adjustable parameters are displayed.

• Press either or to select between **AUTO** resetting or **MAN**UAL resetting (after a fault has occurred).

continued on next page...

PROGRAMMING (continued)

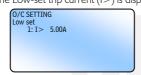
 Press and hold the button to set the options for "Relay 2" as described in the next section.

3. RELAY 2 SETTING

The Default setting for Relay 2 is linked to "O/C & E/F" and energising at the end of the time out period. Resetting mode is Auto.

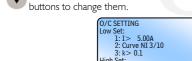
Setting of "Relay 2" is carried out in a similar manner as "Relay I", however it
is necessary to assign the relay to either energise at the start (S) or end (E) of
the time out period.

Actual LCD presentation when adjustable parameters are displayed.


 Press and hold the button to set the options for "OVERCURRENT" as described in the next section.

4. OVERCURRENT SETTING

The description for the Curves is abbreviated when displayed on the screen. Refer to "IDMT Characteristic Curves" for further explanation.


The Default settings for Overcurrent are shown in the last LCD screen example in this section.

 Settings for Overcurrent are displayed in turn following subsequent presses of the house button. The Low-set trip current (I>) is displayed first.

Press either or to change the current.

Press the button to select the remaining settings and use the analysis.

Actual LCD presentation when adjustable parameters are displayed.

Screen example above also shows the default settings for OVERCURRENT.

Press and hold the button to set the options for "EARTH FAULT" as
described in the next section.

If the Curve in selection "2:" is set to Definite Time, then selection "3:" will display "3: t>" and the required delay can then be set.

The High-set is set to Disable in selection "4:", then I >> or t >> cannot be adjusted.

5. EARTH FAULT SETTING

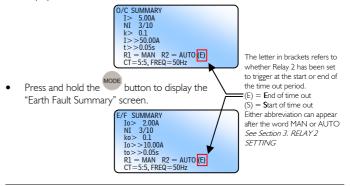
The Default settings for Earth Fault are shown in the LCD screen example in this section.

 Settings for Earth Fault are carried out in the same manner as described for Overcurrent.

Screen example showing the default settings for EARTH FAULT.

 Press and hold the button to see a summary of the "OVERCURRENT" then "EARTH FAULT" settings as described in the next section.

"If the Curve in selection "2:" is set to Definite Time, then selection "3:" will display "3: to>" and the required delay can then be set.


"If High-set is set to Disable in selection "4:" then lo>> or to>> cannot h

The High-set is set to Disable in selection "4:", then lo >> or to >> cannot be adjusted.

6. OVERCURRENT & EARTH FAULT SUMMARY

This not possible to edit settings when these screens are displayed.

 Following the setting of "Earth Fault", the LCD displays the "Overcurrent Summary" screen showing a summary of the settings made during programming. All settings are displayed. The selected CT ratio, Network Frequency and Relay operation (following a Reset) information is also displayed.

7. SAVING OF SETTINGS

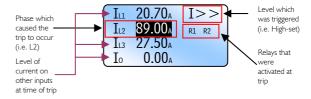
If after viewing the Summary screens the settings are correct, press and hold
the button until the word "Saved." appears. Any new settings are now
stored.

• The screen will revert back to Normal operation.

8. QUICK VIEW OF USER SETTINGS

This not possible to edit settings when these screens are displayed.

This feature can also be activated with the front window closed!


- Press and hold the button to display the initial power up screen.
- Press the same button again to display the "Last Tripped Information" screen (refer to the next section for further information on this feature).
- Press again to display the "Overcurrent Summary" screen.
- Press again to display the "Earth Fault Summary" screen.
- Press again to display the contact details for Broyce Control.
- Press again to revert back to Normal operation.

9. LAST TRIPPED INFORMATION

This information is held in memory even if power is removed. If a new trip event occurs, this information will be overwritten.

This feature allows the user to view the key information relating to the last trip condition. It is accessed as described in Section 8 above.

It highlights the cause of the trip (i.e. which phase for example), the level of current at the time the trip occurred; the triggering method (Low-set or High-set) and which relays were activated. An example is shown below.

Notes during programming

TIf during programming it is necessary to abort, press the button briefly

Pressing and holding either or or for > I sec. will increment or decrement the new value at a quicker rate.

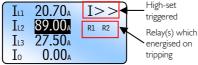
Stepping through each User Setting screen is performed by pressing and

holding the button until the desired screen is displayed.

Short presses of the button will allow further editable settings to be changed within a specific screen.

If the user remains in a setting or summary screen where no adjustments or button presses are made within a certain period, the screen will revert back to Normal operation. Additionally, any settings that have been made but not stored will not be saved.

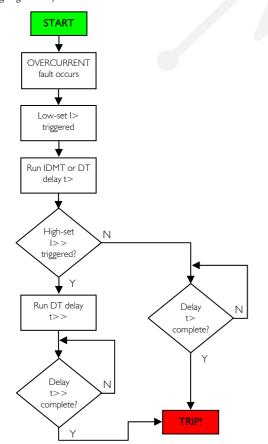

"O/C" refers to Overcurrent and "E/F" refers to Earth fault.


TRIPPING MODES

I. OVERCURRENT

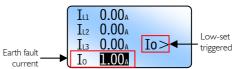
- A fault which develops on a phase will be indicated by an increase in current reading on the LCD. When the level of current exceeds the Low-set setting, the phase at fault will be highlighted by the digits flashing.
- The LCD backlight will flash.
- Relay 2 will energise if assigned to Overcurrent and set to energise at the start
 of the time out period (See Section 3. RELAY 2 SETTING).
- The characters "I>" will display to indicate the Low-set has been triggered.

If the current continues to increase above the High-set setting, the characters "I>" will change and display "I>>" to indicate the High-set has been triggered.

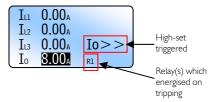


- When the unit finally trips, the digits of the phase at fault will stop flashing and remain highlighted. This allows the user to see which phase was at fault and caused the unit to trip.
- The red "Tripped" LED will also flash.
- The relays which energised are also displayed on the screen after tripping.
- Press to reset and return the unit back to normal operation (assuming the fault has been cleared). The LCD reverts back to displaying the normal system currents and the red "Tripped" LED stops flashing.

"If either relay is set for Auto resetting, then they would have de-energised after the fault had cleared. The corresponding relay ident (i.e. RI and/or R2) on the display would also disappear. Pressing the "RESET" button will only clear the LCD. If either relay is set for Manual resetting, then pressing the "RESET" button will deenergise the relay(s) and clear the LCD.


In the event of an Overcurrent condition, the basic sequence of events is shown below.

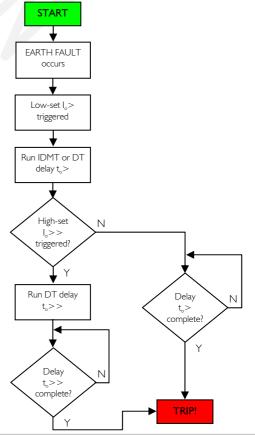
Assuming High-set trip is enabled.



2. EARTH FAULT

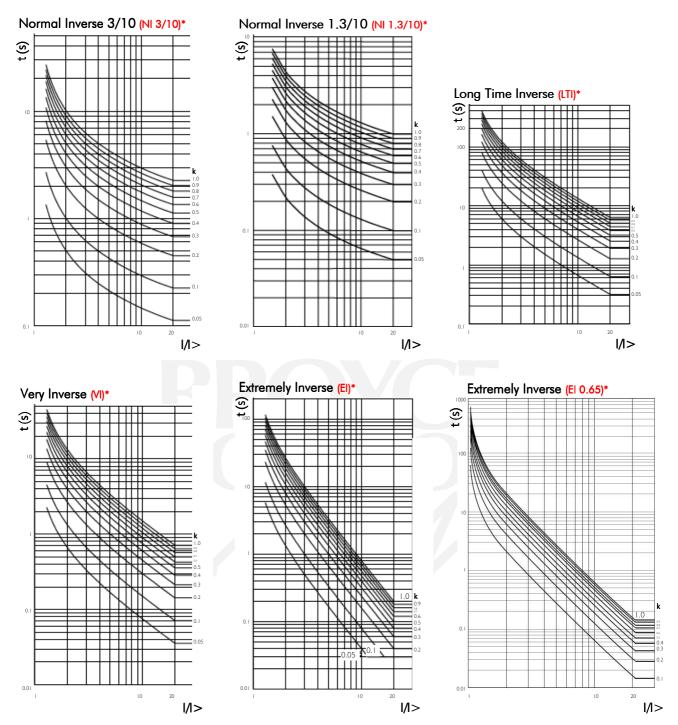
- When an Earth fault occurs causing a flow in current through the Neutral, an
 increase in current reading on the LCD will occur. When the level of current
 exceeds the Low-set setting, the reading will be highlighted by the digits
 flashing.
- The LCD backlight will flash.
- Relay 2 will energise if assigned to Earth fault and set to energise at the start of the time out period (See Section 3. RELAY 2 SETTING).
- The characters "lo>" will display to indicate the Low-set has been triggered.

If the current continues to increase above the High-set setting, the characters "lo>" will change and display "lo>>" to indicate the High-set has been triggered.

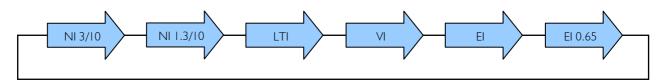


- When the unit finally trips, the digits will stop flashing and remain highlighted.
 This allows the user to see what caused the unit to trip.
- The red "Tripped" LED will also flash.
- The relays which energised are also displayed on the screen after tripping.
- Press to reset and return the unit back to normal operation (assuming the fault has been cleared). The LCD reverts back to displaying the normal system currents and the red "Tripped" LED stops flashing.

The faither relay is set for Auto resetting, then they would have de-energised after the fault had cleared. The corresponding relay ident (i.e. RI and/or R2) on the display would also disappear. Pressing the "RESET" button will only clear the LCD. If either relay is set for Manual resetting, then pressing the "RESET" button will de-energise the relay(s) and clear the LCD.


In the event of an Earth fault condition, the basic sequence of events is shown below.

Assuming High-set trip is enabled.



• IDMT CHARACTERISTIC CURVES

^{*} Abbreviations used in the LCD screen for the selected IDMT characteristic curve.

The sequence of curves that are presented to the user when programming is shown below

• TECHNICAL SPECIFICATION

Supply voltage Un (1, 2): 85 – 265VAC/85 - 370VDC **Smal** 18 – 57VAC/18 – 75VDC

(Voltage range should be specified at time of

ordering)

Rated frequency: 50/60Hz (AC Supplies) Isolation: Over voltage cat. III

Rated impulse

withstand voltage: $4kV (1.2 / 50\mu S) IEC 60664$

Power consumption: 3W max.

Rated current input In: 5A (directly connected)

Rated frequency: 50/60Hz
Burden: <0.4VA @ In
Overload: 4 x In (continuous)

External CT's (9.....16):

Class P recommended. (with 5A secondary)

Maximum CT primary

current rating: 5000A

Overcurrent settings:

Low-set trip (I >): 0.50 – 10.00A (I0 - 200%)

Low-set time multiplier (k>): 0.05 - 1.00Low-set definite time (t>): 0.05 - 1.00s

High-set trip (1 > >): 0.5 – 100A (10 - 2000%) or disable

High-set definite time (t > >): 0.05 - 2.5s

Earth fault settings:

Low-set trip $(I_o>)$: 0.10 – 5.00A (2 – 100%)

Low-set time multiplier $(k_o>)$: 0.05 - 1.00Low-set definite time $(t_a>)$: 0.05 - 1.00s

Low-set definite time $(t_o>)$: 0.05 – 100s High-set trip $(I_o>>)$: 0.10 – 50.00A (2 – 1000%) or disable

High-set definite time ($t_o >>$): 0.05 - 2.5s

Pick up value: +2% of trip setting

Accuracy:

Protection thresholds: ± 5%

Time delay (DT): \pm 5% (with a minimum of 50mS)

Time delay (IDMT): \pm 5% (with a minimum of 50mS and I > 1.2 x

set-trip)

Actual phase current: \pm 1% of rated current In Actual Earth fault current: \pm 1% of rated current In

Display update time: < I sec.

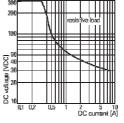
Repeat accuracy: $\pm 0.5\%$ @ constant conditions

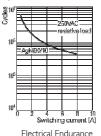
Ambient temperature: -10 to +60°C Relative humidity: +95%

Output:

(RL1 - 3, 4, 5): I x SPDT relay
(RL2 - 6, 7, 8): I x SPDT relay

Output stations


ACL 250/86 (20


Output rating: ACT 250V 8A (2000VA) ACTS 250V 5A (1250VA)

AC15 250V 5A (1250VA) DC1 25V 8A (200W) Electrical life: Dielectric voltage: Rated impulse ≥ 150,000 ops at rated load 2kV AC (rms) IEC 60947-1

withstand voltage:

4kV (1.2 / 50μS) IEC 60664

Max. DC Load Breaking Capacity

Housing: Flame retardant Lexan Protection: IP55 / IP20 (rear)

Weight: ≈ 600g

Mounting: Panel mounting. Cut-out = $91 \times 91 \text{ mm}$ ($\pm 0.5 \text{mm}$)

Max. panel thickness: 12mm

Terminal type: UL94 V-0 rated pluggable and re-wireable female

connectors comprising: 2-way (Power supply I, 2) 6-way (Relay contacts 3....8)

8-way (Phase current and neutral inputs 9....16)

Terminal conductor size: 0.05 - 2.5mm² (30 - 12AWG)

Recommended tightening

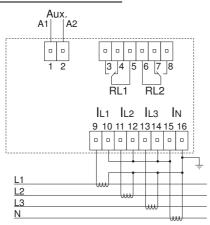
torque: 4.4in lb (0.5Nm)

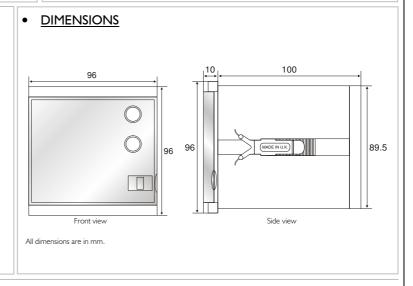
Wire stripping length: 0.24 - 0.30in (6 - 7.5mm)

Approvals: Conforms to IEC. CE and C and RoHS Compliant.

EMC: Immunity: EN/IEC 61000-6-2 Emissions: EN/IEC 61000-6-4

Generic: IEC 60255-26 (EMC), IEC 255-3, IEC


60255-151


() Bold digits in brackets refer to terminal numbers on the rear of the unit.

Options

The P9600 range also includes individual Overcurrent or Earth fault relays available with either IDMT or DT characteristics. Please refer to separate data sheets.

CONNECTION DIAGRAM

Overcurrent Relay

- ☐ True R.M.S. measurements
- ☐ Low Set and High Set tripping thresholds
- ☐ 6 selectable IDMT (Inverse Definite Minimum Time) characteristic curves
- ☐ Adjustable DT (Definitive Time)
- ☐ Measurement and live display of individual phase currents
- Pre-defined selectable CT ratio's (5:5....5000:5)
- ☐ Microprocessor based (self checking) with non-volatile memory
- ☐ "Ecosmart" Energy efficient power supply design
- □ Rear mounted pluggable connectors for supply, relay contacts and current input

Dims:
front)
yody)
Omm

Dims: W x H. 96 x 96mm (front) W x H. 89.5 x 89.5mm (main body) L. 100mm

PRESENTATION In 0.00A In

- 1. LCD (Liquid Crystal Display) for user information
- 2. "RESET" button
- 3. "TEST" button
- 4. "Power supply" green LED indication
- 5. "MODE" button*
- 6. Parameter increment button*
- 7. Parameter decrement button*
- 8. "Trip status" red LED indication
- * accessible only when the front cover is open

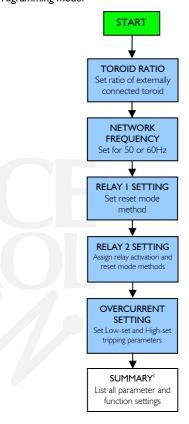
OPERATION & OVERVIEW

The P9670 (from the P9600 series family of IDMT/DT relays) is a microprocessor based relay designed to monitor and detect Overcurrent on individual phases in a 3-phase application. Typically the P9670 is wired in conjunction with external current transformers of the feeder to be protected.

A clear backlit LCD provides all the key information that the user requires for both operation and the setting up. Setting is achieved in a few simple steps and requires no previous knowledge of product operation.

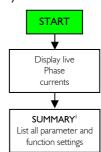
Normal operation provides the user with actual live individual phase currents all on one screen. The actual phase current represents that of the current passing through the primary side of the externally connected CT's. This is achieved by the setting of the ratio for the CT.

Programming mode allows the user to assign the operation of both internal relays for either Auto or Manual resetting. Relay 2 has the added option of being allowed to energise at the start or end of a time out period. If assigned to energise at the start, the Relay can be used to operate a buzzer or lamp giving early warning before a system actually shuts down.


Low-set and High-set thresholds can be programmed for the Overcurrent detection. The time current characteristic of the low-set units are selectable between Normal Inverse curve 3/10, Normal Inverse curve 1.3/10, Long Time Inverse curve, Very Inverse curve, Extremely Inverse curve, Extremely Inverse of Control of Cont

A simple Summary screen is displayed once the programming is complete. The same screen can also be displayed by subsequent presses of the "RESET" button. This allows the user to access key information with the tamperproof transparent cover closed and sealed.

A Test mode is provided (also accessible with the tamperproof transparent cover closed) to confirm the correct operation of the internal relays. The relays will energise when the "TEST" button is pressed and de-energise when the button is released (AUTO Reset) or when the "RESET" button is pressed (MAN reset).


FUNCTION OVERVIEW

Programming mode.

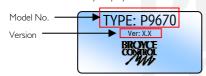
Programmable parameters

User settings summary mode

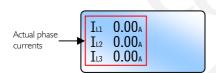
¹ Displaying of the Summary screen during normal operation is achieved via subsequent presses of the "RESET" button. See Section 7. QUICK VIEW OF USER SETTINGS for further information.

INSTALLATION

Installation work must be carried out by qualified personnel.


- BEFORE INSTALLATION, ISOLATE THE SUPPLY. THIS PRODUCT IS DESIGNED TO CONNECT TO SEVERAL TYPES OF CIRCUITS. ENSURE ALL ARE ISOLATED ^
- Remove the P9670 from the packaging.
- Lift the raised part of the side clip in order to withdraw from the housing. Carry this out on each side.
- Insert the P9670 into the panel cut-out and fit the side clips back on to the housing.
- Slide the clips towards the front of the unit until they come in to contact with the reverse of the panel. The unit is now secured in place.
- Wire the supplied female pluggable connectors as required.
- Plug the connectors into the relevant sockets on the rear of the unit.
- The P9670 is now ready for powering and programming.

The front window of the P9670 is supplied with a clear protective film which can be removed as and when necessary.


^ When carrying out future maintenance on the product or application and it becomes necessary to disconnect the connectors from the product, ensure for the Current Transformer connector, they do not remain open circuit. This can lead to high voltages being present on this connector.

NORMAL OPERATION

- Apply power to the unit and the green "Power supply" LED will illuminate.
- The LCD will momentarily display a welcome screen as shown...

....then after a short delay reverts to indicating the following information:

TEST MODE

Press and hold the button and both relays will energise. The LCD will display the characters "TEST" and the product part number (as below). The LCD backlight and red "Trip" LED will flash.

- button and the relay(s) will remain energised if set to Manual reset or de-energise if set to Auto reset.
- to de-energise relay(s) which are set to Manual reset. The LCD will revert back to Normal operation. The LCD backlight and red "Trip" LED will stop flashing.

Testing should be carried out on a regular basis to check the integrity of the P9670.

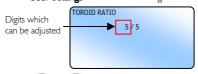
DO NOT use this product to provide a means of isolating circuits in order to work on when placed in the "TEST" mode. This should only be done by means of operating isolators, circuit breakers or other methods of removing power in this application.

PROGRAMMING

Programming/setting of the P9670 is carried out using the 3 buttons located behind the transparent cover.

button selects the required parameter to be changed. The buttons either increment or decrement a value accordingly.

Any adjustments made are stored by the pressing and holding of the until the LCD shows the word "Saved!" See Section 6. SAVING OF SETTINGS.


Thease read the "Notes during programming" before commencing with the following.

IA. TOROID RATIO

Setting the Toroid Ratio will allow the "actual" Phase currents (IL1, IL2, IL3) displayed on the LCD to represent that of the currents flowing through the external CT's. If no CT's are used, the parameter should be set to 5/5 (i.e. 1:1). The setting applies to all CT's.

Default setting is "5/5"

Press and hold the $\stackrel{ ext{MODE}}{=}$ button. The LCD displays a screen showing the characters "User Settings" then the following screen appears...

- Press either to set the primary value of the external CT's.
- The digit after the forward slash "/" cannot be changed.

IB. NETWORK FREQUENCY

Default setting is "50Hz"

Whilst in the same screen as that for the Toroid Ratio (see IA.), press

to select between 50Hz or 60Hz. This should be set to suit the frequency of the network being monitored.

Press and hold the button to set the options for "Relay I" as described in the next section

2. RELAY I SETTING

Default setting for Relay 1 is Manual resetting mode.

The same screen is used for setting both Relay 1 and Relay 2"

The LCD displays the following screen. The options under "RELAY I:" are displayed and the default setting highlighted.

Actual LCD presentation when adjustable parameters are displayed

- Press either or to select between **AUTO** resetting or **MAN**UAL resetting (after a fault has occurred).
- Press and hold the button to set the options for "Relay 2" as described in the next section

continued on next page...

PROGRAMMING (continued)

3. RELAY 2 SETTING

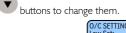
The Default setting for Relay 2 is to energise at the end of the time out period. Resetting mode is Auto.

Setting of "Relay 2" is carried out in a similar manner as "Relay I"; however it
is necessary to assign the relay to either energise at the start (S) or end (E) of
the time out period.

Actual LCD presentation when adjustable parameters are displayed.

Press and hold the button to set the options for "OVERCURRENT" as
described in the next section

4. OVERCURRENT SETTING


The description for the Curves is abbreviated when displayed on the screen. Refer to "IDMT Characteristic Curves" for further explanation.

Default settings for Overcurrent are shown in the last LCD screen example in this section

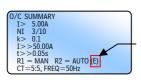
Settings for Overcurrent are displayed in turn following subsequent presses of

- Press either or to change the current.
- Press the button to select the remaining settings and use the an

Actual LCD presentation when adjustable parameters are displayed.

Screen example above also shows the default settings for OVERCURRENT.

 Press and hold the button to set the options for "EARTH FAULT" as described in the next section.


The Curve in selection "2:" is set to Definite Time, then selection "3:" will display "3: t>" and the required delay can then be set.

If High-set is set to Disable in selection "4:", then l>> or t>> cannot be adjusted.

5. OVERCURRENT SUMMARY

This not possible to edit settings when this screen is displayed.

 Following the setting of "Overcurrent", the LCD displays the "Overcurrent" screen showing a summary of the settings made during programming. All settings are displayed. The selected CT ratio, Network Frequency and Relay operation (following a Reset) information is also displayed.

whether Relay 2 has been set to trigger at the start or end of the time out period.

(E) = **End** of time out
(S) = **S**tart of time out
Either abbreviation can appear after the word MAN or
AUTO

The letter in brackets refers to

See Section 3. RELAY 2
SETTING

6. SAVING OF SETTINGS

If after viewing the Summary screen the settings are correct, press and hold

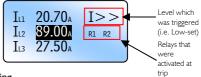
the button until the word "Saved." appears. Any new settings are now stored.

• The screen will revert back to Normal operation.

7. QUICK VIEW OF USER SETTINGS

This not possible to edit settings when these screens are displayed.

This feature can also be activated with the front window closed!


- Press the same button again to display the "Last Tripped Information" screen (refer to the next section for further information on this feature).
- Press again to display the "Overcurrent Summary" screen.
- Press again to display the contact details for Broyce Control.
- Press again to revert back to Normal operation.

8. LAST TRIPPED INFORMATION

This information is held in memory even if power is removed. If a new trip event occurs, this information will be overwritten.

This feature allows the user to view the key information relating to the last trip condition. It is accessed as described in Section 7 on the left.

It highlights the level of current at the time the trip occurred; the triggering method (Low-set or High-set) and which relays were activated. An example is shown below

Notes during programming

The during programming it is necessary to abort, press the button briefly.

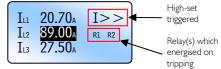
Pressing and holding either or or for > I sec. will increment or decrement the new value at a quicker rate.

Stepping through each User Setting screen is performed by pressing and

holding the button until the desired screen is displayed.


Short presses of the button will allow further editable settings to be changed within a specific screen.

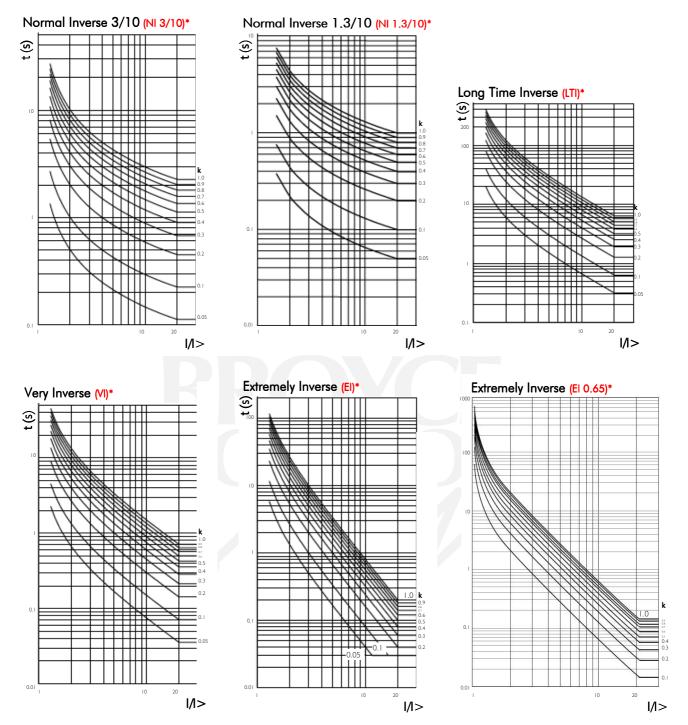
If the user remains in a setting or summary screen where no adjustments or button presses are made within a certain period, the screen will revert back to Normal operation. Additionally, any settings that have been made but not stored will not be saved.


"O/C" refers to Overcurrent.

TRIPPING MODE

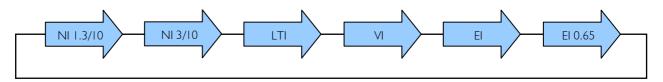
- A fault which develops on a phase will be indicated by an increase in current reading on the LCD. When the level of current exceeds the Low-set setting, the phase at fault will be highlighted by the digits flashing.
- The LCD backlight will flash.
- Relay 2 will energise if assigned to Overcurrent and set to energise at the start
 of the time out period (See Section 3. RELAY 2 SETTING).
- The characters "I>" will display to indicate the Low-set has been triggered.

If the current continues to increase above the High-set setting, the characters
"I>" will change and display "I>>" to indicate the High-set has been
triggered.



- When the unit finally trips, the digits of the phase at fault will stop flashing and remain highlighted. This allows the user to see which phase was at fault and caused the unit to trip.
- The red "Tripped" LED will also flash.
- The relays which energised are also displayed on the screen after tripping.
- Press to reset and return the unit back to normal operation (assuming the fault has been cleared). The LCD reverts back to displaying the normal system currents and the red "Tripped" LED stops flashing.

The either relay is set for Auto resetting, then they would have de-energised after the fault had cleared. The corresponding relay ident (i.e. RI and/or R2) on the display would also disappear. Pressing the "RESET" button will only clear the LCD. If either relay is set for Manual resetting, then pressing the "RESET" button will deenergise the relay(s) and clear the LCD.



IDMT CHARACTERISTIC CURVES

 $^{\ ^*}$ Abbreviations used in the LCD screen for the selected IDMT characteristic curve.

The sequence of curves that are presented to the user when programming is shown below

TECHNICAL SPECIFICATION

85 - 265VAC/85 - 370VDC **Smar** Supply voltage Un (I, 2):

18 - 57VAC/18 - 75VDC

(Voltage range should be specified at time of

ordering)

50/60Hz (AC Supplies) Rated frequency: Over voltage cat. III Isolation:

Rated impulse

4kV (1.2 / 50μS) IEC 60664 withstand voltage:

Power consumption: 3W max.

Rated current input In: 5A (directly connected)

50/60Hz Rated frequency: Burden: < 0.4VA @ In Overload: 4 x In (continuous)

External CT (15,16):

Class P recommended. (with 5A secondary)

Maximum CT primary

current rating: 5000A

Overcurrent settings:

0.50 - 10.00A(10 - 200%)Low-set trip (I>):

Low-set time multiplier (k>): 0.05 - 1.00 Low-set definite time (t>): 0.05 - 100s

High-set trip (I>>): 0.5 - 100A (10 - 2000%) or disable

High-set definite time (t>>): 0.05 - 2.5s

Pick up value: +2% of trip setting

Accuracy:

Protection threshold: ± 5%

Time delay (DT): ± 5% (with a minimum of 50mS)

Time delay (IDMT): \pm 5% (with a minimum of 50mS and I > 1.2 x

set-trip)

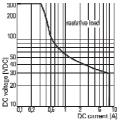
Actual Earth fault current: ± 1% of rated current In

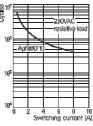
Display update time: < | sec.

Repeat accuracy: ± 0.5% @ constant conditions

Ambient temperature: -10 to +60°C Relative humidity: +95%

Output:


(RLI - 3, 4, 5): I x SPDT relay (RL2 - 6, 7, 8): I x SPDT relay


Output rating: ACI 250V 8A (2000VA)

ACI5 250V 5A (1250VA) DCI 25V 8A (200W)

Electrical life: Dielectric voltage: Rated impulse withstand voltage: ≥ 150,000 ops at rated load 2kV AC (rms) IEC 60947-1

4kV (1.2 / 50µS) IEC 60664

Max. DC Load Breaking Capacity

Electrical Endurance

Housing: Flame retardant Lexan Protection: IP55 / IP20 (rear)

Weight: ≈ 520g

Mounting: Panel mounting. Cut-out = $91 \times 91 \text{mm}$ ($\pm 0.5 \text{mm}$)

Max. panel thickness:

UL94 V-0 rated pluggable and re-wireable female Terminal type:

connectors comprising: 2-way (Power supply 1, 2) 6-way (Relay contacts 3....8) 8-way (Phase current inputs 9.... 14)

Note that terminals **15 and 16** are not used on this

model and should be left unconnected.

Terminal conductor size:

0.05 - 2.5mm² (30 - 12AWG)

Recommended tightening torque:

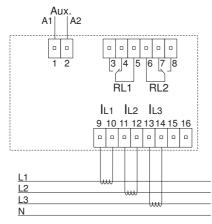
4.4in lb (0.5Nm)

Wire stripping length: 0.24 - 0.30in (6 - 7.5mm)

Conforms to IEC. CE and and RoHS Compliant. Approvals:

EMC: Immunity: EN/IEC 61000-6-2 Emissions: EN/IEC 61000-6-4

Generic: IEC 60255-26 (EMC), IEC 255-3, IEC


60255-151


() Bold digits in brackets refer to terminal numbers on the rear of the unit.

Options:

The P9600 range also includes combined Overcurrent or Earth fault relays available with either IDMT or DT characteristics. Additionally, a voltage, power and frequency monitoring only product is also available. Please refer to separate data sheets

CONNECTION DIAGRAM

Earth Fault Relay

- ☐ True R.M.S. measurements
- ☐ Low Set and High Set tripping thresholds
- ☐ 6 selectable IDMT (Inverse Definite Minimum Time) characteristic curves
- ☐ Adjustable DT (Definitive Time)
- ☐ Measurement and live display of earth fault current
- Pre-defined selectable CT ratio's (5:5....5000:5)
- ☐ Microprocessor based (self checking) with non-volatile memory
- ☐ "Ecosmart" Energy efficient power supply design
- Rear mounted pluggable connectors for supply, relay contacts and current input

Dims: W x H. 96 x 96mm (front) W x H. 89.5 x 89.5mm (main body)

PRESENTATION IO 0.00A RESET A G Trip S P9660 Earth Fault Relay

- 1. LCD (Liquid Crystal Display) for user information
- 2. "RESET" button
- 3. "TEST" button
- 4. "Power supply" green LED indication
- 5. "MODE" button*
- 6. Parameter increment button*
- 7. Parameter decrement button*
- 8. "Trip status" red LED indication
- * accessible only when the front cover is open

OPERATION & OVERVIEW

The P9660 (from the P9600 series family of IDMT/DT relays) is a microprocessor based relay designed to monitor and detect an Earth fault current by measurement of the imbalance of the current from a current transformer arrangement like that shown in the Connection Diagram on Page 5.

A clear backlit LCD provides all the key information that the user requires for both operation and the setting up. Setting is achieved in a few simple steps and requires no previous knowledge of product operation.

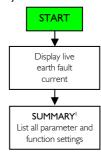
Normal operation provides the user with the actual live earth fault current on one screen. The actual current represents that of the current passing through the primary side of the externally connected CT. This is achieved by the setting of the ratio for the CT.

Programming mode allows the user to assign the operation of both internal relays for either Auto or Manual resetting. Relay 2 has the added option of being allowed to energise at the start or end of a time out period. If assigned to energise at the start, the Relay can be used to operate a buzzer or lamp giving early warning before a system actually shuts down.


Low-set and High-set thresholds can be programmed for the Earth fault detection. The time current characteristic of the low-set units are selectable between Normal Inverse curve 3/10, Normal Inverse curve I.3/10, Long Time Inverse curve, Very Inverse curve, Extremely Inverse curve, Extremely Inverse curve, Extremely Inverse of Definite Time. High-set units are the Definitive Time type. Instantaneous tripping is possible by setting the time to minimum.

A simple Summary screen is displayed once the programming is complete. The same screen can also be displayed by subsequent presses of the "RESET" button. This allows the user to access key information with the tamperproof transparent cover closed and sealed.

A Test mode is provided (also accessible with the tamperproof transparent cover closed) to confirm the correct operation of the internal relays. The relays will energise when the "TEST" button is pressed and de-energise when the button is released (AUTO Reset) or when the "RESET" button is pressed (MAN reset).


FUNCTION OVERVIEW

Programming mode.

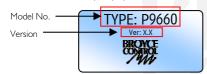
Programmable parameters

User settings summary mode

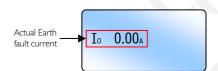
¹ Displaying of the Summary screen during normal operation is achieved via subsequent presses of the "RESET" button. See Section 7. QUICK VIEW OF USER SETTINGS for further information.

INSTALLATION

Installation work must be carried out by qualified personnel.


- BEFORE INSTALLATION, ISOLATE THE SUPPLY. THIS PRODUCT IS DESIGNED TO CONNECT TO SEVERAL TYPES OF CIRCUITS. ENSURE ALL ARE ISOLATED ^
- Remove the P9660 from the packaging.
- Lift the raised part of the side clip in order to withdraw from the housing. Carry this out on each side.
- Insert the P9660 into the panel cut-out and fit the side clips back on to the housing.
- Slide the clips towards the front of the unit until they come in to contact with the reverse of the panel. The unit is now secured in place.
- Wire the supplied female pluggable connectors as required.
- Plug the connectors into the relevant sockets on the rear of the unit.
- The P9660 is now ready for powering and programming.

The front window of the P9660 is supplied with a clear protective film which can be removed as and when necessary.


^ When carrying out future maintenance on the product or application and it becomes necessary to disconnect the connectors from the product, ensure for the Current Transformer connector, they do not remain open circuit. This can lead to high voltages being present on this connector.

NORMAL OPERATION

- Apply power to the unit and the green "Power supply" LED will illuminate.
- The LCD will momentarily display a welcome screen as shown...

....then after a short delay reverts to indicating the following information:

TEST MODE

Press and hold the button and both relays will energise. The LCD will display the characters "TEST" and the product part number (as below). The LCD backlight and red "Trip" LED will flash.

- button and the relay(s) will remain energised if set to Manual reset or de-energise if set to Auto reset.
- to de-energise relay(s) which are set to Manual reset. The LCD will revert back to Normal operation. The LCD backlight and red "Trip" LED will stop flashing.

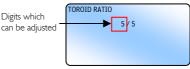
Testing should be carried out on a regular basis to check the integrity of the P9660.

DO NOT use this product to provide a means of isolating circuits in order to work on when placed in the "TEST" mode. This should only be done by means of operating isolators, circuit breakers or other methods of removing power in this application.

PROGRAMMING

Programming/setting of the P9660 is carried out using the 3 buttons located behind the transparent cover.

button selects the required parameter to be changed. The buttons either increment or decrement a value accordingly.

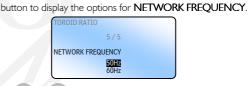

Any adjustments made are stored by the pressing and holding of the until the LCD shows the word "Saved!" See Section 6. SAVING OF SETTINGS.

Thease read the "Notes during programming" before commencing with the following.

IA. TOROID RATIO

Setting the Toroid Ratio will allow the "actual" Earth fault current (Io) to be displayed on the LCD which represents that of the current flowing through the parallel connected, external CT's. If no CT's are used, the parameter should be set to 5/5 (i.e. 1:1). Use this if the fault current is likely to be <5A. Default setting is "5/5"

Press and hold the button. The LCD displays a screen showing the characters "User Settings" then the following screen appears...



- Press either to set the primary value of the external CT's.
 - The digit after the forward slash "/" cannot be changed.

IB. NETWORK FREQUENCY

Default setting is "50Hz"

Whilst in the same screen as that for the Toroid Ratio (see IA.), press

- to select between 50Hz or 60Hz. This should be set to suit the frequency of the network being monitored.
- Press and hold the button to set the options for "Relay I" as described in the next section

2. RELAY I SETTING

Default setting for Relay | is Manual resetting mode.

The LCD displays the following screen.

Actual LCD presentation when adjustable parameters are displayed.

- Press either or to select between **AUTO** resetting or **MAN**UAL resetting (after a fault has occurred).
- Press and hold the button to set the options for "Relay 2" as described in the next section

continued on next page...

PROGRAMMING (continued)

3. RELAY 2 SETTING

The Default setting for Relay 2 is to energise at the end of the time out period. Resetting mode is Auto.

Setting of "Relay 2" is carried out in a similar manner as "Relay I"; however it
is necessary to assign the relay to either energise at the start (S) or end (E) of
the time out period.

Actual LCD presentation when adjustable parameters are displayed.

Press and hold the button to set the options for "EARTH FAULT" as
described in the next section

4. EARTH FAULT SETTING

The Default settings for Earth Fault are shown in the LCD screen example in this section.

 Settings for Earth fault are displayed in turn following subsequent presses of the button. The Low-set trip current (lo>) is displayed first.

Press either or to change the current.

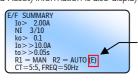
Press the button to select the remaining settings and use the

buttons to change them.

E/F SETTING
Low Set:
1: 10> 2.00A
2: Curve NI 3/10
3: ko> 0.1
High Set:
4: 10>> 10.0A
5: to>> 0.05s

Actual LCD presentation when adjustable parameters are displayed. Screen example above also shows the default settings for OVERCURRENT.

Press and hold the button to view the summary of settings for "EARTH FAULT" as described in the next section.


** If the Curve in selection "2:" is set to Definite Time, then selection "3:" will display "3: t>" and the required delay can then be set.

The High-set is set to Disable in selection "4:", then lo>> or to>> cannot be adjusted.

5. EARTH FAULT SUMMARY

This not possible to edit settings when this screen is displayed.

 Following the setting of "Earth Fault", the LCD displays the "Earth Fault" screen showing a summary of the settings made during programming. All settings are displayed. The selected CT ratio, Network Frequency and Relay operation (following a Reset) information is also displayed.

The letter in brackets refers to whether Relay 2 has been set to trigger at the start or end of the time out period.

(E) = End of time out
(S) = Start of time out
Either abbreviation can appear after the word MAN or
AUTO

See Section 3. RELAY 2

6. SAVING OF SETTINGS

 If after viewing the Summary screen the settings are correct, press and hold the button until the word "Saved." appears. Any new settings are now stored.

• The screen will revert back to Normal operation.

7. QUICK VIEW OF USER SETTINGS

This not possible to edit settings when these screens are displayed.

This feature can also be activated with the front window closed!

Press and hold the button to display the initial power up screen.

- Press the same button again to display the "Last Tripped Information" screen (refer to the next section for further information on this feature).
- Press again to display the "Earth Fault Summary" screen.
- Press again to display the contact details for Broyce Control.
- Press again to revert back to Normal operation.

8. LAST TRIPPED INFORMATION

This information is held in memory even if power is removed. If a new trip event occurs, this information will be overwritten.

This feature allows the user to view the key information relating to the last trip condition. It is accessed as described in Section 7 on the left.

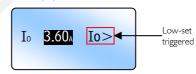
It highlights the level of current at the time the trip occurred; the triggering method (Low-set or High-set) and which relays were activated. An example is shown below

TIf during programming it is necessary to abort, press the button briefly.

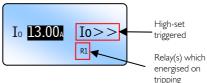
Pressing and holding either or or for > I sec. will increment or decrement the new value at a quicker rate.

Stepping through each User Setting screen is performed by pressing and

holding the button until the desired screen is displayed.


Short presses of the button will allow further editable settings to be changed within a specific screen.

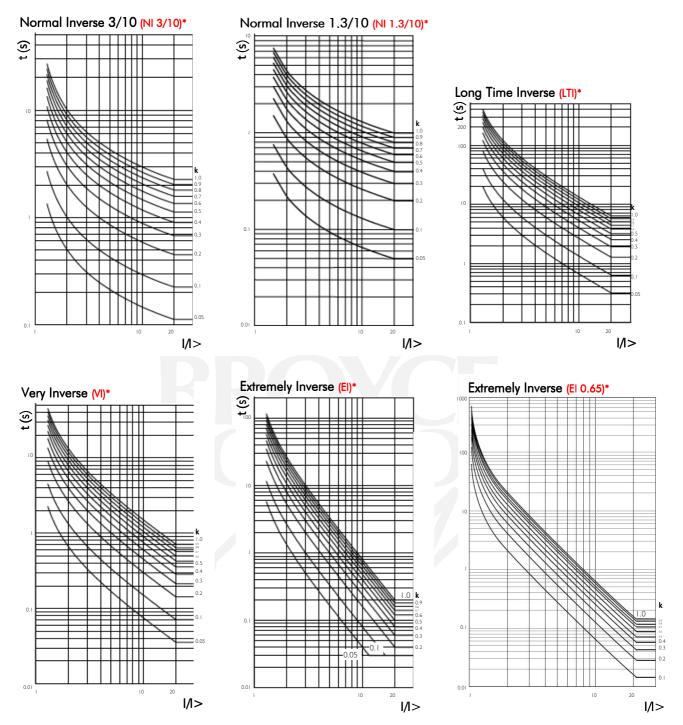
The user remains in a setting or summary screen where no adjustments or button presses are made within a certain period, the screen will revert back to Normal operation. Additionally, any settings that have been made but not stored will not be saved.


"E/F" refers to Earth fault.

TRIPPING MODE

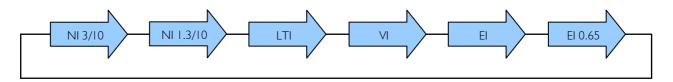
- When an Earth fault condition occurs, the current displayed on the LCD increased accordingly. When the level of current exceeds the Low-set setting, the reading will be highlighted by the digits flashing.
- The LCD backlight will flash.
- Relay 2 will energise immediately if set to energise at the start of the time out period (See Section 3. RELAY 2 SETTING).
- The characters "lo>" will display to indicate the Low-set has been triggered.

 If the current continues to increase above the High-set setting, the characters "lo>" will change and display "lo>>" to indicate the High-set has been triggered.



- When the unit finally trips, the digits will stop flashing and remain highlighted. This allows the user to see what current caused the unit to trip.
- The red "Tripped" LED will also flash.
- The relays which energised are also displayed on the screen after tripping.
- Press to reset and return the unit back to normal operation (assuming the fault has been cleared). The LCD reverts back to displaying the normal system currents and the red "Tripped" LED stops flashing.

The faither relay is set for Auto resetting, then they would have de-energised after the fault had cleared. The corresponding relay ident (i.e. RI and/or R2) on the display would also disappear. Pressing the "RESET" button will only clear the LCD. If either relay is set for Manual resetting, then pressing the "RESET" button will de-energise the relay(s) and clear the LCD.



IDMT CHARACTERISTIC CURVES

^{*} Abbreviations used in the LCD screen for the selected IDMT characteristic curve.

The sequence of curves that are presented to the user when programming is shown below

TECHNICAL SPECIFICATION

85 - 265VAC/85 - 370VDC **Smart** Supply voltage Un (I, 2):

18 - 57VAC/18 - 75VDC

(Voltage range should be specified at time of

ordering)

50/60Hz (AC Supplies) Rated frequency: Over voltage cat. III Isolation:

Rated impulse

withstand voltage: 4kV (1.2 / 50µS) IEC 60664

Power consumption: 3W max.

Rated current input In: 5A (directly connected)

50/60Hz Rated frequency: Burden: < 0.4VA @ In Overload: 4 x In (continuous)

External CT (15,16): Class P recommended. (with 5A secondary)

Maximum CT primary

current rating: 5000A

Earth fault settings:

0.10 - 5.00A(2 - 100%)Low-set trip $(I_o>)$:

Low-set time multiplier ($k_0 >$): 0.05 - 1.00Low-set definite time (t $_{\circ}>$): 0.05 - 100s

High-set trip (I_o>>): 0.10 - 50.0A (2 - 1000%) or disable

High-set definite time ($t_o >>$): 0.05 - 2.5s

Pick up value: +2% of trip setting

Accuracy:

Protection threshold: ± 5%

Time delay (DT): ± 5% (with a minimum of 50mS)

Time delay (IDMT): \pm 5% (with a minimum of 50mS and I > 1.2 x

set-trip)

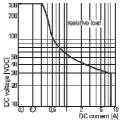
Actual Earth fault current: ± 1% of rated current In

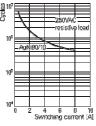
Display update time: < | sec.

Repeat accuracy: ± 0.5% @ constant conditions

Ambient temperature: -10 to +60°C Relative humidity: +95%

Output:


(RLI - 3, 4, 5): I x SPDT relay (RL2 - 6, 7, 8): I x SPDT relay


Output rating: ACI 250V 8A (2000VA) ACI5 250V 5A (1250VA)

DCI 25V 8A (200W)

Electrical life: Dielectric voltage: Rated impulse withstand voltage: ≥ 150,000 ops at rated load 2kV AC (rms) IEC 60947-1

 $4kV (1.2 / 50\mu S) IEC 60664$

Max. DC Load Breaking Capacity

Electrical Endurance

Housing: Flame retardant Lexan Protection: IP55 / IP20 (rear)

Weight: ≈410g

Mounting: Panel mounting. Cut-out = $91 \times 91 \text{mm} (\pm 0.5 \text{mm})$

Max. panel thickness:

UL94 V-0 rated pluggable and re-wireable female Terminal type:

connectors comprising: 2-way (Power supply 1, 2) 6-way (Relay contacts 3....8) 8-way (CT input 15, 16)

Note that terminals 9 to 14 are not used on this

model and should be left unconnected.

0.05 - 2.5mm² (30 - 12AWG) Terminal conductor size:

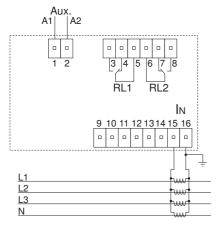
Recommended tightening

4.4in lb (0.5Nm) torque: Wire stripping length: 0.24 - 0.30in (6 - 7.5mm)

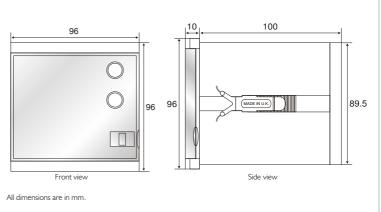
Conforms to IEC. CE and Wand RoHS Compliant. Approvals:

EMC: Immunity: EN/IEC 61000-6-2 Emissions: EN/IEC 61000-6-4

Generic: IEC 60255-26 (EMC), IEC 255-3, IEC

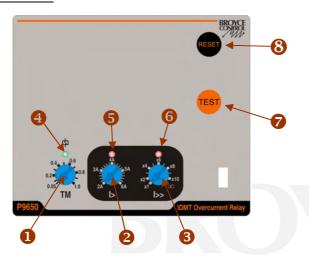

60255-151

() Bold digits in brackets refer to terminal numbers on the rear of the unit.


Options:

The P9600 range also includes combined Overcurrent or Earth fault relays available with either IDMT or DT characteristics. Additionally, a voltage, power and frequency monitoring only product is also available. Please refer to separate data sheets.

CONNECTION DIAGRAM


Inverse Definite Minimum Time (IDMT) Overcurrent Relay

- True R.M.S. measurements
- Adjustable Low-set and High-set tripping threshold (with option to disable High-set tripping)
- П Adjustable Time Multiplier for defining curve tripping characteristic (applicable to Low-set triggering only)
- Normal Inverse 3/10 tripping characteristics (Low-set threshold only)
- Instantaneous tripping on High-set triggering
- Test and Reset button for simulating and clearing of fault condition
- Red LED indication of Low-set or High-set triggering and tripping
- \Box Green LED indication for Auxiliary power supply presence
- Microprocessor based (self checking) with non-volatile memory
- Terminals suitable for 2 x 2.5mm² wires (complete with protective cover)

W x H. 96 x 96mm (front) W x H. 89.5 x 89.5mm (main body)

PRESENTATION

- 1. "Time Multiplier" adjustment*
- 2. "Low-set I>" trip adjustment*3. "High-set I>>" trip adjustment*
- 4. "Power supply" green LED indication
- 5. "Low-set triggered" red LED indication
- 6. "High-set triggered" red LED indication "TEST" button
- 8. "RESET" button
- accessible only when the front cover is open

OPERATION

Example 1.

When an Overcurrent occurs in one of the phases and the level of current exceeds the "Low-set I>" trip threshold, the corresponding red LED above the adjustment illuminates. The time out then commences however the point at which tripping occurs is defined by:

A, the level of current that is above the trip threshold. B, the Time Multiplier setting.

When tripping finally occurs, the red LED will then flash indicating a tripped condition.

If the fault current has been removed, pressing the "RESET" button will return the relay back to normal operation. The red LED will then extinguish.

Example 2.

If a fault current occurs such that it exceeds the "High-set I>>" trip threshold the relay will de-energise with no delay. The red LED above the "High-set I>>" adjustment will flash.

In the event of an Overcurrent condition, the basic sequence of events is shown below.

Assuming High-set trip is enabled.


GENERAL OVERVIEW

The P9650 (from the P9600 series family of IDMT/DT relays) is a microprocessor based relay designed to monitor and detect Overcurrents in 3-phase applications. Typically the P9650 is wired in conjunction with external current transformers (1 per phase) of the feeder to be

The adjustments and indicators are laid out such to help the user during set-up and fault finding. The adjustment for the Low-set for example has its corresponding red LED positioned above it so it is clear to which function this LED relates to. The same also applies to the Highset adjustment and LED. Adjustment and LED operation is explained further on the next page.

The adjustment for TM (which defines the curve response to tripping) is assigned to the Lowset triggering only. The High-set does not have any additional adjustments and hence will trip instantaneously if triggered. If required, the High-set can be set to disabled.

A Test mode is provided (also accessible with the tamperproof transparent cover closed) to confirm the correct operation of the internal relays. The relay will energise when the "TEST" button is pressed and de-energise when the "RESET" button is pressed.

INSTALLATION

Installation work must be carried out by qualified personnel.

- BEFORE INSTALLATION, ISOLATE THE SUPPLY. THIS PRODUCT IS
 DESIGNED TO CONNECT TO SEVERAL TYPES OF CIRCUITS.
 ENSURE ALL ARE ISOLATED
- Remove the P9650 from the packaging.
- Lift the raised part of the side clip in order to remove from the housing. Carry this out on each side.
- Insert the P9650 into the panel cut-out and fit the side clips back on to the housing.
- Slide the clips towards the front of the unit until they come in to contact with the reverse of the panel. The unit is now secured in place.
- Connect wires to the rear terminals as required.
- The P9650 is now ready for powering and setting.

The front window of the P9650 is supplied with a clear protective film which can be removed as and when necessary.

NORMAL OPERATION

• Apply power to the unit and the green "Power supply" LED will illuminate.

TEST MODE

- Press and hold the button and the relay will energise. Both the red "I>" and "I>>" LED's will illuminate.
- Release the button and the relay will remain energised.
- Press the button to de-energise the relay. Both red LED's will extinguish.

Testing should be carried out on a regular basis to check the integrity of the P9650.

DO NOT use this product to provide a means of isolating circuits in order to work on when placed in the "TEST" mode. This should only be done by means of operating isolators, circuit breakers or other methods of removing power in this application.

SETTING & OPERATION

Setting of the P9650 is carried out using the 3 potentiometers located behind the transparent cover.

I. IDT

The adjustment for "TM" (Time Multiplier) defines the tripping characteristic when the "Low-set" threshold "I>" has been exceeded. The lower the setting, the faster the response to tripping. The higher the setting, the slower the response.

2. Low-Set Trip threshold (I>)

The adjustment for the "Low-set" can be set from 2 to 6A. When the threshold is exceeded due to an Overcurrent condition, the corresponding red LED above the adjustment illuminates indicating activity. When tripping finally occurs, the red LED will then flash.

3. High-Set Trip threshold (I >>)

The adjustment for the "High-set" can be set from x1 to x10 then disable i.e.

The scale markings are multipliers of what has been set on the "Low-set" threshold. For example if the "Low-set" is set to 4A and "High-set" x8, this will be the equivalent of $4 \times 8 = 32A$.

When the threshold is exceeded due to an Overcurrent condition, the corresponding red LED above the adjustment illuminates indicating activity. When tripping finally occurs, the red LED will then flash.

If tripping occurs whereby the High-set level is exceeded, only the LED for the High-set will illuminate/flash. This allows the user to clearly identify which threshold was triggered causing the trip.

There is no delay associated with High-set therefore, tripping is instantaneous.

LED FUNCTION SUMMARY

The green LED will remain illuminated for as long as power is applied to the Aux. connections (Terminals 1 and 2).

In response to an Overcurrent condition:

Status	l>	l>>
Normal		
Low-set triggered	•	0
Low-set Tripped	-	0
High-set triggered	0	•
High-set Tripped	0	-

In response to Test and Reset button operation:

Button press	l>	l>>
TEST	•	•
RESET	0	0

Key:

TECHNICAL SPECIFICATION

Supply voltage Un (1, 2): 115VAC ±15%

230VAC ±15%

4kV (1.2 / 50µS) IEC 60664

(Voltage should be specified at time of ordering)

50/60Hz

3W max.

Rated frequency: Over voltage cat. III Isolation:

Rated impulse

withstand voltage: Power consumption:

Rated current input In: 5A (directly connected)

Rated frequency: 50Hz <0.4VA @ In Burden: Overload: 4 x In (continuous)

External CT's

(9, 10, 11, 12, 13, 14): Class P recommended. (with 5A secondary)

+2% of trip setting

Overcurrent settings:

2.0 - 6.0A (40 - 120%) Low-set trip (I>)

Time multiplier (IDT): 0.05 - 1.0

xI - xI0 or disable (∞) High-set trip (I>>): High-set definite time: Instantaneous (<50mS)

Pick up value:

Accuracy:

Protection thresholds: ±5%

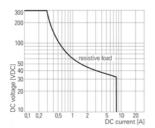
 \pm 5% (with a minimum of 50mS) Response time: ± 0.5% @ constant conditions Repeat accuracy:

Ambient temperature: -10 to +60°C

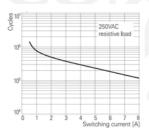
+95% (non-condensing) Relative humidity:

Output:

(RLI - 3, 4, 5): I x SPDT relay


ACI 250V 8A (2000VA) Output rating: AC15 250V 5A (1250VA)

DCI 25V 8A (200W)


Electrical life: ≥ 150,000 ops at rated load 2kV AC (rms) IEC 60947-1 Dielectric voltage:

Rated impulse

4kV (1.2 / 50µS) IEC 60664 withstand voltage:

Max. DC Load Breaking Capacity

Electrical Endurance

Housing: Flame retardant I exan Protection: IP55 / IP20 (rear) ≈ 590g Weight:

Mounting: Panel mounting. Cut-out = $91 \times 91 \text{mm} (\pm 0.5 \text{mm})$

Max. panel thickness:

Terminal conductor size: 0.05 - 2.5mm² (30 - I2AWG)

Recommended tightening

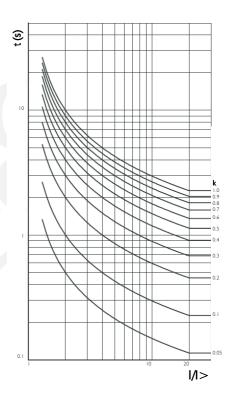
10in lb (1Nm) toraue:

Wire stripping length: 0.24 - 0.30in (6 - 7.5mm)

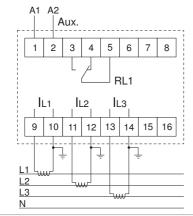
Conforms to IEC. CE and C and RoHS Compliant. Approvals:

EMC: Immunity: EN/IEC 61000-6-2 Emissions: EN/IEC 61000-6-4

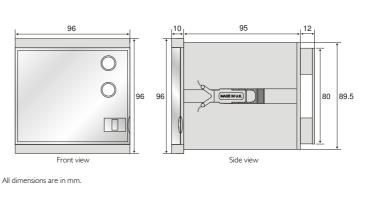
Generic: IEC 60255-26 (EMC), IEC 255-3, IEC


60255-151

() Bold digits in brackets refer to terminal numbers on the rear of the unit.

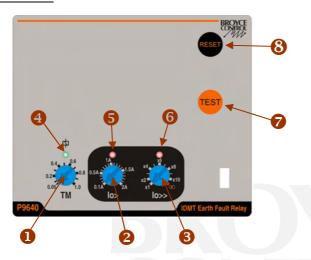

Options:

The P9600 range also includes individual Overcurrent or Earth fault relays available with either IDT or IDMT tripping characteristics. Please refer to separate data sheets.


Tripping Curve Characteristics (Normal Inverse 3/10).

CONNECTION DIAGRAM

DIMENSIONS


Inverse Definite Minimum Time (IDMT) Earth Fault Relay

- True R.M.S. measurements
- Adjustable Low-set and High-set tripping threshold (with option to disable High-set tripping)
- П Adjustable Time Multiplier for defining curve tripping characteristic (applicable to Low-set triggering only)
- Normal Inverse 3/10 tripping characteristics (Low-set threshold only)
- Instantaneous tripping on High-set triggering
 - Test and Reset button for simulating and clearing of fault condition
- Red LED indication of Low-set or High-set triggering and tripping
- \Box Green LED indication for Auxiliary power supply presence
- Microprocessor based (self checking) with non-volatile memory
- Terminals suitable for 2 x 2.5mm² wires (complete with protective cover)

W x H. 96 x 96mm (front) W x H. 89.5 x 89.5mm (main body)

PRESENTATION

- 1. "Time Multiplier" adjustment*
- 2. "Low-set Io>" trip adjustment*
 3. "High-set Io>>" trip adjustment*
- 4. "Power supply" green LED indication
- 5. "Low-set triggered" red LED indication
- 6. "High-set triggered" red LED indication
- "TEST" button
- accessible only when the front cover is open
- 8. "RESET" button

OPERATION

Example 1.

When an Overcurrent occurs in one of the phases and the level of current exceeds the "Low-set lo>" trip threshold, the corresponding red LED above the adjustment illuminates. The time out then commences however the point at which tripping occurs is defined by:

A, the level of current that is above the trip threshold. B, the Time Multiplier setting.

When tripping finally occurs, the red LED will then flash indicating a tripped condition.

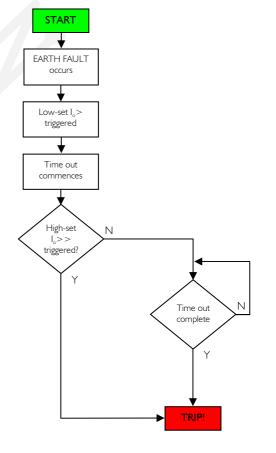
If the fault current has been removed, pressing the "RESET" button will return the relay back to normal operation. The red LED will then extinguish.

Example 2.

If a fault current occurs such that it exceeds the "High-set lo>>" trip threshold the relay will de-energise with no delay. The red LED above the "High-set lo>>" adjustment will flash.

In the event of an Earth fault condition, the basic sequence of events is shown below.

Assuming High-set trip is enabled.


GENERAL OVERVIEW

The P9640 (from the P9600 series family of IDMT/DT relays) is a microprocessor based relay designed to monitor and detect Earth faults in 3-phase applications. Typically the P9640 is wired in conjunction with external current transformers of the feeder to be protected.

The adjustments and indicators are laid out to help the user during set-up and fault finding. The adjustment for the Low-set for example has its corresponding red LED positioned above it so it is clear to which function this LED relates to. The same also applies to the High-set adjustment and LED. Adjustment and LED operation is explained further on the next page.

The adjustment for TM (which defines the curve response to tripping) is assigned to the Lowset triggering only. The High-set does not have any additional adjustments and hence will trip instantaneously if triggered. If required, the High-set can be set to disabled.

A Test mode is provided (also accessible with the tamperproof transparent cover closed) to confirm the correct operation of the internal relay. The relay will energise when the "TEST" button is pressed and de-energise when the "RESET" button is pressed.

INSTALLATION

Installation work must be carried out by qualified personnel.

- BEFORE INSTALLATION, ISOLATE THE SUPPLY. THIS PRODUCT IS
 DESIGNED TO CONNECT TO SEVERAL TYPES OF CIRCUITS.
 ENSURE ALL ARE ISOLATED
- Remove the P9640 from the packaging.
- Lift the raised part of the side clip in order to remove from the housing. Carry this out on each side.
- Insert the P9640 into the panel cut-out and fit the side clips back on to the housing.
- Slide the clips towards the front of the unit until they come in to contact with the reverse of the panel. The unit is now secured in place.
- Connect wires to the rear terminals as required.
- The P9640 is now ready for powering and setting.

The front window of the P9640 is supplied with a clear protective film which can be removed as and when necessary.

NORMAL OPERATION

• Apply power to the unit and the green "Power supply" LED will illuminate.

TEST MODE

- Press and hold the button and the relay will energise. Both the red "lo>" and "lo>" LED's will illuminate.
- Release the button and the relay will remain energised.
- Press the button to de-energise the relay. Both red LED's will extinguish.

Testing should be carried out on a regular basis to check the integrity of the P9640.

DO NOT use this product to provide a means of isolating circuits in order to work on when placed in the "TEST" mode. This should only be done by means of operating isolators, circuit breakers or other methods of removing power in this application.

SETTING & OPERATION

Setting of the P9640 is carried out using the 3 potentiometers located behind the transparent cover.

I. Delay (s)

The adjustment for "TM" (Time Multiplier) defines the tripping characteristic when the "Low-set" threshold "Io>" has been exceeded. The lower the setting, the faster the response to tripping. The higher the setting, the slower the response.

2. Low-Set Trip threshold (lo>)

The adjustment for the "Low-set" can be set from 0.1 to 2A. When the threshold is exceeded due to an Earth fault condition, the corresponding red LED above the adjustment illuminates indicating activity. When tripping finally occurs, the red LED will then flash.

3. High-Set Trip threshold (lo>>)

The adjustment for the "High-set" can be set from $\times 1$ to $\times 10$ then disable i.e.

The scale markings are multipliers of what has been set on the "Low-set" threshold. For example if the "Low-set" is set to 1.5A and "High-set" \times 6, this will be the equivalent of 1.5 \times 6 = 9A.

When the threshold is exceeded due to an Earth fault condition, the corresponding red LED above the adjustment illuminates indicating activity. When tripping finally occurs, the red LED will then flash.

The tripping occurs whereby the High-set level is exceeded, only the LED for the High-set will illuminate/flash. This allows the user to clearly identify which threshold was triggered causing the trip.

There is no delay associated with High-set therefore, tripping is instantaneous.

LED FUNCTION SUMMARY

The green LED will remain illuminated for as long as power is applied to the Aux. connections (Terminals 1 and 2).

In response to an Earth fault condition:

Status	lo>	lo>>
Normal	0	
Low-set triggered	•	0
Low-set Tripped	-6	0
High-set triggered	0	•
High-set Tripped	0	-6

In response to Test and Reset button operation:

Button press	lo>	lo>>
TEST	•	•
RESET	0	

Key:

TECHNICAL SPECIFICATION

Supply voltage Un (1, 2): 115VAC ±15%

230VAC ±15%

(Voltage should be specified at time of ordering)

50/60Hz

Rated frequency: Over voltage cat. III Isolation:

Rated impulse

withstand voltage:

4kV (1.2 / 50µS) IEC 60664

Power consumption: 3W max.

Rated current input In: 5A (directly connected)

Rated frequency: 50Hz <0.4VA @ In Burden: Overload: 4 x In (continuous)

External CT's (15, 16): Class P recommended. (with 5A secondary)

Earth fault settings:

Low-set trip $(I_o>)$: 0.10 - 2.0A(2 - 40%)

0.05 - 1.0Time multiplier (TM):

High-set trip $(I_0 >>)$: xI - xI0 or disable (∞) Instantaneous (<50mS) High-set definite time:

Pick up value:

+2% of trip setting

Accuracy:

 $\pm 5\%$

Protection thresholds:

Response time: ± 5% (with a minimum of 50mS) $\pm\,0.5\%$ @ constant conditions Repeat accuracy:

-10 to +60°C Ambient temperature:

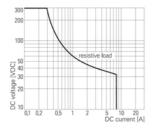
Relative humidity: +95% (non-condensing)

Output:

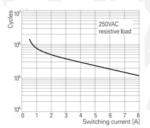
(RLI - 3, 4, 5): I x SPDT relay

Output rating: ACI 250V 8A (2000VA)

AC15 250V 5A (1250VA) DCI 25V 8A (200W)


2kV AC (rms) IEC 60947-1

≥ 150,000 ops at rated load Electrical life:


Dielectric voltage:

Rated impulse

4kV (1.2 / 50 μ S) IEC 60664 withstand voltage:

Max. DC Load Breaking Capacity

Electrical Endurance

Housing: Flame retardant I exan Protection: IP55 / IP20 (rear)

≈ 450g Weight:

Mounting: Panel mounting. Cut-out = $91 \times 91 \text{mm} (\pm 0.5 \text{mm})$

Max. panel thickness:

Terminal conductor size: 0.05 - 2.5mm² (30 - I2AWG)

Recommended tightening

toraue:

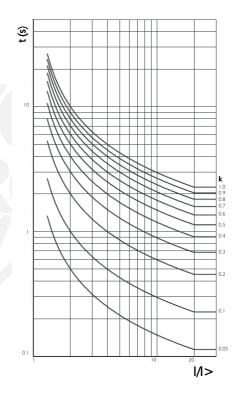
10in lb (1Nm) Wire stripping length: 0.24 - 0.30in (6 - 7.5mm)

Conforms to IEC. CE and Cand RoHS Compliant. Approvals:

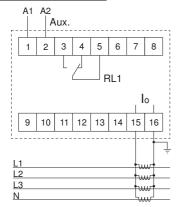
EMC: Immunity: EN/IEC 61000-6-2

Emissions: EN/IEC 61000-6-4

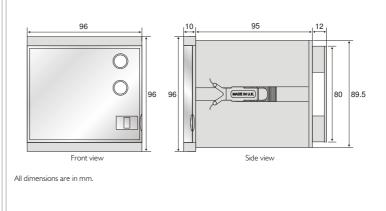
Generic: IEC 60255-26 (EMC), IEC 255-3, IEC


60255-151

() Bold digits in brackets refer to terminal numbers on the rear of the unit.

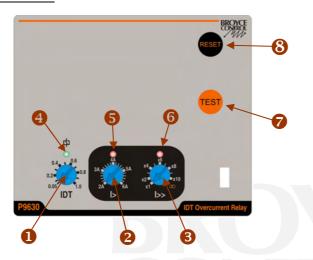

Options:

The P9600 range also includes individual Overcurrent or Earth fault relays available with either IDT or IDMT tripping characteristics. Please refer to separate data sheets.


Tripping Curve Characteristics (Normal Inverse 3/10).

CONNECTION DIAGRAM

DIMENSIONS


Inverse Definite Time (IDT) Overcurrent Relay

- True R.M.S. measurements
- Adjustable Low-set tripping threshold
- Adjustable High-set tripping threshold with option to disable
- Adjustable Time Multiplier for defining curve tripping characteristic (applicable to Low-set triggering only)
- Instantaneous tripping on High-set triggering
- Test and Reset button for simulating and clearing of fault condition
- Red LED indication of Low-set or High-set triggering and tripping
- \Box Green LED indication for Auxiliary power supply presence
- Microprocessor based (self checking) with non-volatile memory
- Terminals suitable for 2 x 2.5mm² wires (complete with protective cover)

W x H. 96 x 96mm (front) W x H. 89.5 x 89.5mm (main body)

PRESENTATION

- 1. "Time Multiplier" adjustment*
- 2. "Low-set I>" trip adjustment*3. "High-set I>>" trip adjustment*
- 4. "Power supply" green LED indication
- 5. "Low-set triggered" red LED indication
- 6. "High-set triggered" red LED indication "TEST" button
- 8. "RESET" button
- accessible only when the front cover is open

OPERATION

Example 1.

When an Overcurrent occurs in one of the phases and the level of current exceeds the "Low-set I>" trip threshold, the corresponding red LED above the adjustment illuminates. The time out then commences however the point at which tripping occurs is defined by:

A, the level of current that is above the trip threshold. B, the Time Multiplier setting.

When tripping finally occurs, the red LED will then flash indicating a tripped condition.

If the fault current has been removed, pressing the "RESET" button will return the relay back to normal operation. The red LED will then extinguish.

Example 2.

If a fault current occurs such that it exceeds the "High-set I>>" trip threshold the relay will de-energise with no delay. The red LED above the "High-set I>>" adjustment will flash.

In the event of an Overcurrent condition, the basic sequence of events is shown below.

Assuming High-set trip is enabled.


GENERAL OVERVIEW

The P9630 (from the P9600 series family of IDMT/DT relays) is a microprocessor based relay designed to monitor and detect Overcurrents in 3-phase applications. Typically the P9630 is wired in conjunction with external current transformers (1 per phase) of the feeder to be

The adjustments and indicators are laid out such to help the user during set-up and fault finding. The adjustment for the Low-set for example has its corresponding red LED positioned above it so it is clear to which function this LED relates to. The same also applies to the Highset adjustment and LED. Adjustment and LED operation is explained further on the next page.

The adjustment for IDT (which defines the curve response to tripping) is assigned to the Lowset triggering only. The High-set does not have any additional adjustments and hence will trip instantaneously if triggered. If required, the High-set can be set to disabled.

A Test mode is provided (also accessible with the tamperproof transparent cover closed) to confirm the correct operation of the internal relay. The relay will energise when the "TEST" button is pressed and de-energise when the "RESET" button is pressed.

INSTALLATION

Installation work must be carried out by qualified personnel.

- BEFORE INSTALLATION, ISOLATE THE SUPPLY. THIS PRODUCT IS DESIGNED TO CONNECT TO SEVERAL TYPES OF CIRCUITS. ENSURE ALL ARE ISOLATED
- Remove the P9630 from the packaging.
- Lift the raised part of the side clip in order to remove from the housing. Carry this out on each side.
- Insert the P9630 into the panel cut-out and fit the side clips back on to the housing.
- Slide the clips towards the front of the unit until they come in to contact with the reverse of the panel. The unit is now secured in place.
- Connect wires to the rear terminals as required.
- The P9630 is now ready for powering and setting.

The front window of the P9630 is supplied with a clear protective film which can be removed as and when necessary.

NORMAL OPERATION

Apply power to the unit and the green "Power supply" LED will illuminate.

TEST MODE

- Press and hold the button and the relay will energise. Both the red "I>" and "I>>" LED's will illuminate.
- Release the button and the relay will remain energised.
- Press the button to de-energise the relay. Both red LED's will extinguish.

Testing should be carried out on a regular basis to check the integrity of the P9630.

DO NOT use this product to provide a means of isolating circuits in order to work on when placed in the "TEST" mode. This should only be done by means of operating isolators, circuit breakers or other methods of removing power in this application.

SETTING & OPERATION

Setting of the P9630 is carried out using the 3 potentiometers located behind the transparent cover.

I. IDT

The adjustment for "IDT" (Time Multiplier) defines the tripping characteristic when the "Low-set" threshold "I>" has been exceeded. The lower the setting, the faster the response to tripping. The higher the setting, the slower the response.

2. Low-Set Trip threshold (I>)

The adjustment for the "Low-set" can be set from 2 to 6A. When the threshold is exceeded due to an Overcurrent condition, the corresponding red LED above the adjustment illuminates indicating activity. When tripping finally occurs, the red LED will then flash.

3. High-Set Trip threshold (I >>)

The adjustment for the "High-set" can be set from x1 to x10 then disable i.e.

The scale markings are multipliers of what has been set on the "Low-set" threshold. For example if the "Low-set" is set to 4A and "High-set" x8, this will be the equivalent of $4 \times 8 = 32A$.

When the threshold is exceeded due to an Overcurrent condition, the corresponding red LED above the adjustment illuminates indicating activity. When tripping finally occurs, the red LED will then flash.

If tripping occurs whereby the High-set level is exceeded, only the LED for the High-set will illuminate/flash. This allows the user to clearly identify which threshold was triggered causing the trip.

There is no delay associated with High-set therefore, tripping is instantaneous.

LED FUNCTION SUMMARY

The green LED will remain illuminated for as long as power is applied to the Aux. connections (Terminals 1 and 2).

In response to an Overcurrent condition:

Status	l>	l>>
Normal		
Low-set triggered	•	0
Low-set Tripped	-	0
High-set triggered	0	•
High-set Tripped	0	-

In response to Test and Reset button operation:

Button press	l>	l>>
TEST	•	•
RESET	0	

Key:

TECHNICAL SPECIFICATION

Supply voltage Un (1, 2): 115VAC ±15%

230VAC ±15%

(Voltage should be specified at time of ordering)

50/60Hz

Rated frequency: Over voltage cat. III Isolation:

Rated impulse

4kV (1.2 / 50µS) IEC 60664 withstand voltage:

Power consumption: 3W max.

Rated current input In: 5A (directly connected)

Rated frequency: 50Hz <0.4VA @ In Burden: Overload: 4 x In (continuous)

External CT's

(9, 10, 11, 12, 13, 14): Class P recommended. (with 5A secondary)

+2% of trip setting

Overcurrent settings:

2.0 - 6.0A (40 - 120%) Low-set trip (I>)

Time multiplier (IDT): 0.05 - 1.0

xI - xI0 or disable (∞) High-set trip (I>>): High-set definite time: Instantaneous (<50mS)

Pick up value:

Accuracy:

Protection thresholds: ±5%

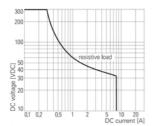
 \pm 5% (with a minimum of 50mS) Response time: ± 0.5% @ constant conditions Repeat accuracy:

Ambient temperature: -10 to +60°C

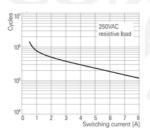
+95% (non-condensing) Relative humidity:

Output:

(RLI - 3, 4, 5): I x SPDT relay


ACI 250V 8A (2000VA) Output rating: AC15 250V 5A (1250VA)

DCI 25V 8A (200W)


Electrical life: ≥ 150,000 ops at rated load 2kV AC (rms) IEC 60947-1 Dielectric voltage:

Rated impulse

4kV (1.2 / 50µS) IEC 60664 withstand voltage:

Max. DC Load Breaking Capacity

Electrical Endurance

Housing: Flame retardant I exan Protection: IP55 / IP20 (rear)

≈ 590g Weight:

Mounting: Panel mounting. Cut-out = $91 \times 91 \text{mm} (\pm 0.5 \text{mm})$

Max. panel thickness:

Terminal conductor size: 0.05 - 2.5mm² (30 - I2AWG)

Recommended tightening

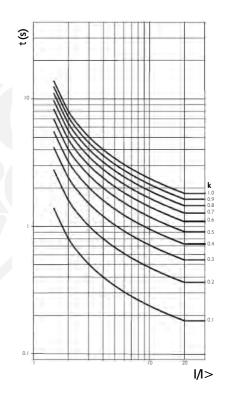
10in lb (1Nm) toraue:

Wire stripping length: 0.24 - 0.30in (6 - 7.5mm)

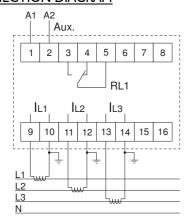
Conforms to IEC. CE and and RoHS Compliant. Approvals:

EMC: Immunity: EN/IEC 61000-6-2 Emissions: EN/IEC 61000-6-4

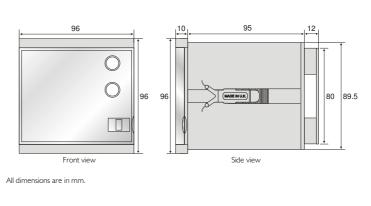
Generic: IEC 60255-26 (EMC), IEC 255-3, IEC


60255-151

() Bold digits in brackets refer to terminal numbers on the rear of the unit.

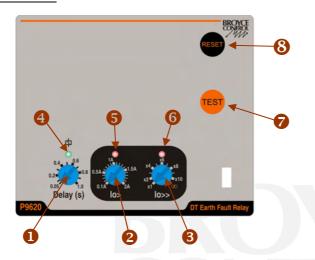

Options:

The P9600 range also includes individual Overcurrent or Earth fault relays available with either IDT or IDMT tripping characteristics. Please refer to separate data sheets.


Tripping Curve Characteristics.

CONNECTION DIAGRAM

DIMENSIONS


Definite Time (DT) Earth Fault Relay

- True R.M.S. measurements
- Adjustable Low-set tripping threshold
- Adjustable High-set tripping threshold with option to disable
- Adjustable Definite Time setting (applicable to Low-set triggering only)
- Instantaneous tripping on High-set triggering
- Test and Reset button for simulating and clearing of fault condition
- Red LED indication of Low-set or High-set triggering and tripping
- \Box Green LED indication for Auxiliary power supply presence
- Microprocessor based (self checking) with non-volatile memory
- Terminals suitable for 2 x 2.5mm² wires (complete with protective cover)

W x H. 96 x 96mm (front) W x H. 89.5 x 89.5mm (main body)

PRESENTATION

- 1. "Delay" adjustment*
- 2. "Low-set Io>" trip adjustment*3. "High-set Io>>" trip adjustment*
- 4. "Power supply" green LED indication
- 5. "Low-set triggered" red LED indication
- "High-set triggered" red LED indication
- "TEST" button
- 8. "RESET" button accessible only when the front cover is open

OPERATION

Example 1.

When an Earth fault occurs and the level of current exceeds the "Low-set lo>" trip threshold, the corresponding red LED above the adjustment illuminates. If the current remains for greater than the time delay set by the adjustment marked "Delay (s)", the relay will then energise. The red LED will then flash indicating a tripped condition.

If the fault current has been removed, pressing the "RESET" button will return the relay back to normal operation. The red LED will then extinguish.

Example 2.

If a fault current occurs such that it exceeds the "High-set lo>>" trip threshold (and before the "Delay (s)" has had time to elapse), the relay will de-energise with no delay. The red LED above the "High-set lo>>" adjustment will flash.

In the event of an Earth fault condition, the basic sequence of events is shown below.

Assuming High-set trip is enabled.

GENERAL OVERVIEW

The P9620 (from the P9600 series family of IDMT/DT relays) is a microprocessor based relay designed to monitor and detect Earth faults in 3-phase applications. Typically the P9620 is wired in conjunction with external current transformers of the feeder to be protected.

The adjustments and indicators are laid out such to help the user during set-up and fault finding. The adjustment for the Low-set for example has its corresponding red LED positioned above it so it is clear to which function this LED relates to. The same also applies to the Highset adjustment and LED. Adjustment and LED operation is explained further on the next page.

The adjustable time delay **Delay (s)** is assigned to the **Low-set** triggering only. The **High-set** does not have any adjustable delay and hence will trip instantaneously if triggered. If required, the High-set can be set to disabled.

A Test mode is provided (also accessible with the tamperproof transparent cover closed) to confirm the correct operation of the internal relay. The relay will energise when the "TEST" button is pressed and de-energise when the "RESET" button is pressed.

INSTALLATION

Installation work must be carried out by qualified personnel.

- BEFORE INSTALLATION, ISOLATE THE SUPPLY. THIS PRODUCT IS
 DESIGNED TO CONNECT TO SEVERAL TYPES OF CIRCUITS.
 ENSURE ALL ARE ISOLATED
- Remove the P9620 from the packaging.
- Lift the raised part of the side clip in order to remove from the housing. Carry this out on each side.
- Insert the P9620 into the panel cut-out and fit the side clips back on to the housing.
- Slide the clips towards the front of the unit until they come in to contact with the reverse of the panel. The unit is now secured in place.
- Connect wires to the rear terminals as required.
- The P9620 is now ready for powering and setting.

The front window of the P9620 is supplied with a clear protective film which can be removed as and when necessary.

NORMAL OPERATION

• Apply power to the unit and the green "Power supply" LED will illuminate.

TEST MODE

- Press and hold the button and the relay will energise. Both the red "lo>" and "lo>" LED's will illuminate.
- Release the button and the relay will remain energised.
- Press the button to de-energise the relay. Both red LED's will extinguish.

Testing should be carried out on a regular basis to check the integrity of the P9620.

DO NOT use this product to provide a means of isolating circuits in order to work on when placed in the "TEST" mode. This should only be done by means of operating isolators, circuit breakers or other methods of removing power in this application.

SETTING & OPERATION

Setting of the P9620 is carried out using the 3 potentiometers located behind the transparent cover.

I. Delay (s)

The adjustment for "Delay (s)" sets the period that the P9620 waits before the relay energises once the "Low-set" threshold "lo>" has been exceeded.

2. Low-Set Trip threshold (lo>)

The adjustment for the "Low-set" can be set from 0.1 to 2A. When the threshold is exceeded due to an Earth fault condition, the corresponding red LED above the adjustment illuminates indicating activity. When tripping finally occurs, the red LED will then flash.

3. High-Set Trip threshold (lo>>)

The adjustment for the "High-set" can be set from $\times 1$ to $\times 10$ then disable i.e.

The scale markings are multipliers of what has been set on the "Low-set" threshold. For example if the "Low-set" is set to 1.5A and "High-set" x6, this will be the equivalent of $1.5 \times 6 = 9A$.

When the threshold is exceeded due to an Earth fault condition, the corresponding red LED above the adjustment illuminates indicating activity. When tripping finally occurs, the red LED will then flash.

The tripping occurs whereby the High-set level is exceeded, only the LED for the High-set will illuminate/flash. This allows the user to clearly identify which threshold was triggered causing the trip.

There is no delay associated with High-set therefore, tripping is instantaneous.

LED FUNCTION SUMMARY

The green LED will remain illuminated for as long as power is applied to the Aux. connections (Terminals 1 and 2).

In response to an Earth fault condition:

Status	lo>	lo>>
Normal		0
Low-set triggered	•	0
Low-set Tripped	-	0
High-set triggered	0	•
High-set Tripped	0	-6

In response to Test and Reset button operation:

Button press	lo>	lo>>
TEST	•	
RESET	0	

Key:

LED off

LED on LED flashing

TECHNICAL SPECIFICATION

Supply voltage Un (I, 2): 115VAC ±15%

230VAC ±15%

(Voltage should be specified at time of ordering)

50/60Hz

Rated frequency: Isolation: Over voltage cat. III

Rated impulse

4kV (1.2 / 50µS) IEC 60664 withstand voltage:

Power consumption: 3W max.

Rated current input In: 5A (directly connected)

Rated frequency: 50Hz <0.4VA @ In Burden: Overload: 4 x In (continuous)

External CT's (15, 16): Class P recommended. (with 5A secondary)

Earth fault settings:

Low-set trip $(I_o>)$: 0.10 - 2.0A(2 - 40%)

0.05 - 1.0sLow-set definite time (t>):

xI - xI0 or disable (∞) High-set trip $(I_0 >>)$: Instantaneous (<50mS) High-set definite time:

Pick up value: Accuracy:

+2% of trip setting

Protection thresholds:

 $\pm 5\%$

Time delay (DT): ± 5% (with a minimum of 50mS)

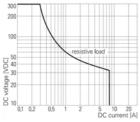
 $\pm\,0.5\%$ @ constant conditions Repeat accuracy:

-10 to +60°C Ambient temperature:

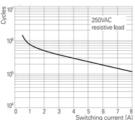
Relative humidity: +95% (non-condensing)

Output:

(RLI - 3, 4, 5): I x SPDT relay


Output rating: ACI 250V 8A (2000VA)

AC15 250V 5A (1250VA) DCI 25V 8A (200W)


≥ 150,000 ops at rated load Electrical life: Dielectric voltage: 2kV AC (rms) IEC 60947-1

Rated impulse

4kV (1.2 / 50 μ S) IEC 60664 withstand voltage:

Max. DC Load Breaking Capacity

Electrical Endurance

Housing: Flame retardant I exan Protection: IP55 / IP20 (rear)

≈ 450g Weight:

Mounting: Panel mounting. Cut-out = $91 \times 91 \text{mm} (\pm 0.5 \text{mm})$

Max. panel thickness:

0.05 - 2.5mm² (30 - I2AWG) Terminal conductor size:

Recommended tightening

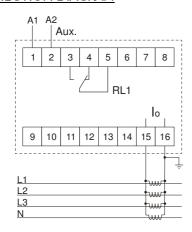
10in lb (1Nm) toraue:

0.24 - 0.30in (6 - 7.5mm) Wire stripping length:

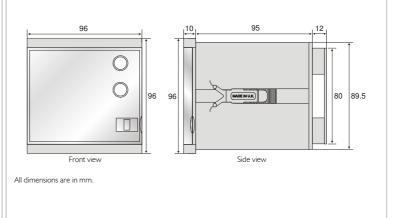
Conforms to IEC. CE and C and RoHS Compliant. Approvals:

EMC: Immunity: EN/IEC 61000-6-2

Emissions: EN/IEC 61000-6-4 Generic: IEC 60255-26 (EMC), IEC 255-3, IEC


60255-151

() Bold digits in brackets refer to terminal numbers on the rear of the unit.


Options:

The P9600 range also includes individual Overcurrent or Earth fault relays available with either IDT or IDMT tripping characteristics. Please refer to separate data sheets.

CONNECTION DIAGRAM

DIMENSIONS

